Timezone: »
Oral
Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello
This paper demonstrates how to recover causal graphs from the score of the data distribution in non-linear additive (Gaussian) noise models. Using score matching algorithms as a building block, we show how to design a new generation of scalable causal discovery methods. To showcase our approach, we also propose a new efficient method for approximating the score's Jacobian, enabling to recover the causal graph. Empirically, we find that the new algorithm, called SCORE, is competitive with state-of-the-art causal discovery methods while being significantly faster.
Author Information
Paul Rolland (Ecole Polytechnique Fédérale de Lausanne)
Volkan Cevher (EPFL)
Matthäus Kleindessner (Amazon)
Chris Russell (Amazon)
Dominik Janzing (Amazon Research Tübingen)
Bernhard Schölkopf (Amazon / MPI Intelligent Systems)
Francesco Locatello (Amazon Lablet)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Thu. Jul 21st through Fri the 22nd Room Hall E #539
More from the Same Authors
-
2022 : Robustness in deep learning: The width (good), the depth (bad), and the initialization (ugly) »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 : Sound and Complete Verification of Polynomial Networks »
Elias Abad Rocamora · Mehmet Fatih Sahin · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2023 Poster: When do Minimax-fair Learning and Empirical Risk Minimization Coincide? »
Harvineet Singh · Matthäus Kleindessner · Volkan Cevher · Rumi Chunara · Chris Russell -
2023 Poster: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2023 Poster: Benign Overfitting in Deep Neural Networks »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Francesco Locatello · Volkan Cevher -
2023 Poster: What can online reinforcement learning benefit from coverage conditions? »
Fanghui Liu · Luca Viano · Volkan Cevher -
2023 Oral: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2022 Poster: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Poster: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2022 Poster: Generalization and Robustness Implications in Object-Centric Learning »
Andrea Dittadi · Samuele Papa · Michele De Vita · Bernhard Schölkopf · Ole Winther · Francesco Locatello -
2022 Spotlight: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2022 Spotlight: Generalization and Robustness Implications in Object-Centric Learning »
Andrea Dittadi · Samuele Papa · Michele De Vita · Bernhard Schölkopf · Ole Winther · Francesco Locatello -
2022 Poster: Individual Preference Stability for Clustering »
Saba Ahmadi · Pranjal Awasthi · Samir Khuller · Matthäus Kleindessner · Jamie Morgenstern · Pattara Sukprasert · Ali Vakilian -
2022 Poster: Active Sampling for Min-Max Fairness »
Jacob Abernethy · Pranjal Awasthi · Matthäus Kleindessner · Jamie Morgenstern · Chris Russell · Jie Zhang -
2022 Oral: Individual Preference Stability for Clustering »
Saba Ahmadi · Pranjal Awasthi · Samir Khuller · Matthäus Kleindessner · Jamie Morgenstern · Pattara Sukprasert · Ali Vakilian -
2022 Spotlight: Active Sampling for Min-Max Fairness »
Jacob Abernethy · Pranjal Awasthi · Matthäus Kleindessner · Jamie Morgenstern · Chris Russell · Jie Zhang -
2021 Poster: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Spotlight: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Nadav Hallak · Panayotis Mertikopoulos · Volkan Cevher -
2021 Oral: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Efficient Proximal Mapping of the 1-path-norm of Shallow Networks »
Fabian Latorre · Paul Rolland · Shaul Nadav Hallak · Volkan Cevher -
2020 Poster: Conditional gradient methods for stochastically constrained convex minimization »
Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher -
2020 Poster: Random extrapolation for primal-dual coordinate descent »
Ahmet Alacaoglu · Olivier Fercoq · Volkan Cevher -
2020 Poster: Double-Loop Unadjusted Langevin Algorithm »
Paul Rolland · Armin Eftekhari · Ali Kavis · Volkan Cevher -
2020 Poster: A new regret analysis for Adam-type algorithms »
Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher -
2019 Poster: Making Decisions that Reduce Discriminatory Impacts »
Matt J. Kusner · Chris Russell · Joshua Loftus · Ricardo Silva -
2019 Poster: Fair k-Center Clustering for Data Summarization »
Matthäus Kleindessner · Pranjal Awasthi · Jamie Morgenstern -
2019 Poster: Guarantees for Spectral Clustering with Fairness Constraints »
Matthäus Kleindessner · Samira Samadi · Pranjal Awasthi · Jamie Morgenstern -
2019 Oral: Making Decisions that Reduce Discriminatory Impacts »
Matt J. Kusner · Chris Russell · Joshua Loftus · Ricardo Silva -
2019 Oral: Guarantees for Spectral Clustering with Fairness Constraints »
Matthäus Kleindessner · Samira Samadi · Pranjal Awasthi · Jamie Morgenstern -
2019 Oral: Fair k-Center Clustering for Data Summarization »
Matthäus Kleindessner · Pranjal Awasthi · Jamie Morgenstern -
2019 Poster: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Poster: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Oral: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2019 Poster: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Poster: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Oral: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2018 Poster: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Poster: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Alp Yurtsever · Olivier Fercoq · Francesco Locatello · Volkan Cevher -
2018 Oral: Detecting non-causal artifacts in multivariate linear regression models »
Dominik Janzing · Bernhard Schölkopf -
2018 Oral: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Alp Yurtsever · Olivier Fercoq · Francesco Locatello · Volkan Cevher -
2018 Poster: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Ehsan Asadi Kangarshahi · Ya-Ping Hsieh · Mehmet Fatih Sahin · Volkan Cevher -
2018 Poster: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Oral: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Ehsan Asadi Kangarshahi · Ya-Ping Hsieh · Mehmet Fatih Sahin · Volkan Cevher -
2018 Oral: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Poster: Crowdsourcing with Arbitrary Adversaries »
Matthäus Kleindessner · Pranjal Awasthi -
2018 Poster: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2018 Oral: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2018 Oral: Crowdsourcing with Arbitrary Adversaries »
Matthäus Kleindessner · Pranjal Awasthi -
2017 Poster: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher -
2017 Talk: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher