Timezone: »
We study offline meta-reinforcement learning, a practical reinforcement learning paradigm that learns from offline data to adapt to new tasks. The distribution of offline data is determined jointly by the behavior policy and the task. Existing offline meta-reinforcement learning algorithms cannot distinguish these factors, making task representations unstable to the change of behavior policies. To address this problem, we propose a contrastive learning framework for task representations that are robust to the distribution mismatch of behavior policies in training and test. We design a bi-level encoder structure, use mutual information maximization to formalize task representation learning, derive a contrastive learning objective, and introduce several approaches to approximate the true distribution of negative pairs. Experiments on a variety of offline meta-reinforcement learning benchmarks demonstrate the advantages of our method over prior methods, especially on the generalization to out-of-distribution behavior policies.
Author Information
Haoqi Yuan (Peking University)
Zongqing Lu (Peking University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Robust Task Representations for Offline Meta-Reinforcement Learning via Contrastive Learning »
Thu. Jul 21st 06:00 -- 06:05 PM Room Room 307
More from the Same Authors
-
2022 Poster: Divergence-Regularized Multi-Agent Actor-Critic »
Kefan Su · Zongqing Lu -
2022 Poster: Difference Advantage Estimation for Multi-Agent Policy Gradients »
yueheng li · Guangming Xie · Zongqing Lu -
2022 Spotlight: Divergence-Regularized Multi-Agent Actor-Critic »
Kefan Su · Zongqing Lu -
2022 Spotlight: Difference Advantage Estimation for Multi-Agent Policy Gradients »
yueheng li · Guangming Xie · Zongqing Lu -
2021 : RL + Operations Research Panel »
Jim Dai · Fei Fang · Shie Mannor · Yuandong Tian · Zhiwei (Tony) Qin · Zongqing Lu -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: The Emergence of Individuality »
Jiechuan Jiang · Zongqing Lu -
2021 Poster: FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning »
Tianhao Zhang · yueheng li · Chen Wang · Guangming Xie · Zongqing Lu -
2021 Oral: The Emergence of Individuality »
Jiechuan Jiang · Zongqing Lu -
2021 Spotlight: FOP: Factorizing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning »
Tianhao Zhang · yueheng li · Chen Wang · Guangming Xie · Zongqing Lu