Timezone: »
Answering complex first-order logic (FOL) queries on knowledge graphs is a fundamental task for multi-hop reasoning. Traditional symbolic methods traverse a complete knowledge graph to extract the answers, which provides good interpretation for each step. Recent neural methods learn geometric embeddings for complex queries. These methods can generalize to incomplete knowledge graphs, but their reasoning process is hard to interpret. In this paper, we propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds. GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets, which provides interpretability for intermediate variables. To reason about the missing links, GNN-QE adapts a graph neural network from knowledge graph completion to execute the relation projections, and models the logical operations with product fuzzy logic. Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries. Meanwhile, GNN-QE can predict the number of answers without explicit supervision, and provide visualizations for intermediate variables.
Author Information
Zhaocheng Zhu (Mila - Quebec AI Institute)
Mikhail Galkin (Mila, McGill University)
Zuobai Zhang (Mila)
Jian Tang (HEC Montreal & MILA)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Neural-Symbolic Models for Logical Queries on Knowledge Graphs »
Tue. Jul 19th 08:20 -- 08:25 PM Room Ballroom 1 & 2
More from the Same Authors
-
2022 : Protein Representation Learning by Geometric Structure Pretraining »
Zuobai Zhang · Zuobai Zhang · Minghao Xu · Minghao Xu · Arian Jamasb · Arian Jamasb · Vijil Chenthamarakshan · Vijil Chenthamarakshan · Aurelie Lozano · Payel Das · Payel Das · Jian Tang · Jian Tang -
2023 : A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs »
Zhaocheng Zhu · Xinyu Yuan · Mikhail Galkin · Louis-Pascal Xhonneux · Ming Zhang · Maxime Gazeau · Jian Tang -
2023 Poster: FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning »
Songtao Liu · Zhengkai Tu · Minkai Xu · Zuobai Zhang · Lu Lin · ZHITAO YING · Jian Tang · Peilin Zhao · Dinghao Wu -
2021 Poster: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Spotlight: Self-supervised Graph-level Representation Learning with Local and Global Structure »
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang -
2021 Poster: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2021 Poster: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Poster: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction »
Hangrui Bi · Hengyi Wang · Chence Shi · Connor Coley · Jian Tang · Hongyu Guo -
2021 Spotlight: An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming »
Minkai Xu · Wujie Wang · Shitong Luo · Chence Shi · Yoshua Bengio · Rafael Gomez-Bombarelli · Jian Tang -
2021 Oral: Learning Gradient Fields for Molecular Conformation Generation »
Chence Shi · Shitong Luo · Minkai Xu · Jian Tang -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 : Opening Remarks: Jian Tang & Le Song »
Jian Tang · Le Song -
2020 Poster: A Graph to Graphs Framework for Retrosynthesis Prediction »
Chence Shi · Minkai Xu · Hongyu Guo · Ming Zhang · Jian Tang -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs »
Meng Qu · Tianyu Gao · Louis-Pascal Xhonneux · Jian Tang -
2020 Poster: Continuous Graph Neural Networks »
Louis-Pascal Xhonneux · Meng Qu · Jian Tang -
2019 Poster: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang -
2019 Oral: GMNN: Graph Markov Neural Networks »
Meng Qu · Yoshua Bengio · Jian Tang