Timezone: »
Poster
Deep symbolic regression for recurrence prediction
Stéphane d'Ascoli · Pierre-Alexandre Kamienny · Guillaume Lample · Francois Charton
Symbolic regression, i.e. predicting a function from the observation of its values, is well-known to be a challenging task. In this paper, we train Transformers to infer the function or recurrence relation underlying sequences of integers or floats, a typical task in human IQ tests which has hardly been tackled in the machine learning literature. We evaluate our integer model on a subset of OEIS sequences, and show that it outperforms built-in Mathematica functions for recurrence prediction. We also demonstrate that our float model is able to yield informative approximations of out-of-vocabulary functions and constants, e.g. $\operatorname{bessel0}(x)\approx \frac{\sin(x)+\cos(x)}{\sqrt{\pi x}}$ and $1.644934\approx \pi^2/6$.
Author Information
Stéphane d'Ascoli (ENS / FAIR, Paris)
Pierre-Alexandre Kamienny (Facebook)
Guillaume Lample (Facebook AI Research)
Francois Charton (FAIR)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Deep symbolic regression for recurrence prediction »
Wed. Jul 20th 06:50 -- 06:55 PM Room None
More from the Same Authors
-
2020 : Probing Dynamic Environments with Informed Policy Regularization »
Pierre-Alexandre Kamienny -
2021 : On the interplay between data structure and loss function: an analytical study of generalization for classification »
Stéphane d'Ascoli · Marylou Gabrié · Levent Sagun · Giulio Biroli -
2021 : Direct then Diffuse: Incremental Unsupervised Skill Discovery for State Covering and Goal Reaching »
Pierre-Alexandre Kamienny · Jean Tarbouriech · Alessandro Lazaric · Ludovic Denoyer -
2021 Poster: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Spotlight: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Poster: ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases »
Stéphane d'Ascoli · Hugo Touvron · Matthew Leavitt · Ari Morcos · Giulio Biroli · Levent Sagun -
2021 Spotlight: ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases »
Stéphane d'Ascoli · Hugo Touvron · Matthew Leavitt · Ari Morcos · Giulio Biroli · Levent Sagun -
2020 Poster: Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime »
Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala