Timezone: »
Poster
Adversarial Robustness against Multiple and Single $l_p$-Threat Models via Quick Fine-Tuning of Robust Classifiers
Francesco Croce · Matthias Hein
A major drawback of adversarially robust models, in particular for large scale datasets like ImageNet, is the extremely long training time compared to standard models. Moreover, models should be robust not only to one $l_p$-threat model but ideally to all of them. In this paper we propose Extreme norm Adversarial Training (E-AT) for multiple-norm robustness which is based on geometric properties of $l_p$-balls. E-AT costs up to three times less than other adversarial training methods for multiple-norm robustness. Using E-AT we show that for ImageNet a single epoch and for CIFAR-10 three epochs are sufficient to turn any $l_p$-robust model into a multiple-norm robust model. In this way we get the first multiple-norm robust model for ImageNet and boost the state-of-the-art for multiple-norm robustness to more than $51\%$ on CIFAR-10. Finally, we study the general transfer via fine-tuning of adversarial robustness between different individual $l_p$-threat models and improve the previous SOTA $l_1$-robustness on both CIFAR-10 and ImageNet. Extensive experiments show that our scheme works across datasets and architectures including vision transformers.
Author Information
Francesco Croce (University of Tuebingen)
Matthias Hein (University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Adversarial Robustness against Multiple and Single $l_p$-Threat Models via Quick Fine-Tuning of Robust Classifiers »
Tue. Jul 19th 09:30 -- 09:35 PM Room Room 327 - 329
More from the Same Authors
-
2022 : Provably Adversarially Robust Detection of Out-of-Distribution Data (Almost) for Free »
Alexander Meinke · Julian Bitterwolf · Matthias Hein -
2022 : Sound randomized smoothing in floating-point arithmetics »
Václav Voráček · Matthias Hein -
2022 : Sound randomized smoothing in floating-point arithmetics »
Václav Voráček · Matthias Hein -
2022 : Classifiers Should Do Well Even on Their Worst Classes »
Julian Bitterwolf · Alexander Meinke · Valentyn Boreiko · Matthias Hein -
2022 : Lost in Translation: Modern Image Classifiers still degrade even under simple Translations »
Leander Kurscheidt · Matthias Hein -
2023 : Robust Semantic Segmentation: Strong Adversarial Attacks and Fast Training of Robust Models »
Francesco Croce · Naman Singh · Matthias Hein -
2023 : In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation »
Julian Bitterwolf · Maximilian Müller · Matthias Hein -
2023 Poster: In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation »
Julian Bitterwolf · Maximilian Müller · Matthias Hein -
2023 Poster: A Modern Look at the Relationship between Sharpness and Generalization »
Maksym Andriushchenko · Francesco Croce · Maximilian Müller · Matthias Hein · Nicolas Flammarion -
2023 Poster: Improving l1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints »
Václav Voráček · Matthias Hein -
2022 : Lost in Translation: Modern Image Classifiers still degrade even under simple Translations »
Leander Kurscheidt · Matthias Hein -
2022 : Classifiers Should Do Well Even on Their Worst Classes »
Julian Bitterwolf · Alexander Meinke · Valentyn Boreiko · Matthias Hein -
2022 : On the interplay of adversarial robustness and architecture components: patches, convolution and attention »
Francesco Croce · Matthias Hein -
2022 Workshop: Shift happens: Crowdsourcing metrics and test datasets beyond ImageNet »
Roland S. Zimmermann · Julian Bitterwolf · Evgenia Rusak · Steffen Schneider · Matthias Bethge · Wieland Brendel · Matthias Hein -
2022 Poster: Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities »
Julian Bitterwolf · Alexander Meinke · Maximilian Augustin · Matthias Hein -
2022 Spotlight: Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities »
Julian Bitterwolf · Alexander Meinke · Maximilian Augustin · Matthias Hein -
2022 Poster: Provably Adversarially Robust Nearest Prototype Classifiers »
Václav Voráček · Matthias Hein -
2022 Poster: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Provably Adversarially Robust Nearest Prototype Classifiers »
Václav Voráček · Matthias Hein -
2021 : Discussion Panel #1 »
Hang Su · Matthias Hein · Liwei Wang · Sven Gowal · Jan Hendrik Metzen · Henry Liu · Yisen Wang -
2021 : Invited Talk #3 »
Matthias Hein -
2021 Poster: Mind the Box: $l_1$-APGD for Sparse Adversarial Attacks on Image Classifiers »
Francesco Croce · Matthias Hein -
2021 Spotlight: Mind the Box: $l_1$-APGD for Sparse Adversarial Attacks on Image Classifiers »
Francesco Croce · Matthias Hein -
2020 : Spotlight Talk 7: AutoAttack: reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks »
Francesco Croce -
2020 : Keynote #1 Matthias Hein »
Matthias Hein -
2020 Poster: Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack »
Francesco Croce · Matthias Hein -
2020 Poster: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks »
Francesco Croce · Matthias Hein -
2020 Poster: Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2020 Poster: Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks »
David Stutz · Matthias Hein · Bernt Schiele -
2019 Poster: Spectral Clustering of Signed Graphs via Matrix Power Means »
Pedro Mercado · Francesco Tudisco · Matthias Hein -
2019 Oral: Spectral Clustering of Signed Graphs via Matrix Power Means »
Pedro Mercado · Francesco Tudisco · Matthias Hein