Timezone: »
Inferring the abstract relational and causal structure of the world is a major challenge for reinforcement-learning (RL) agents. For humans, language—particularly in the form of explanations—plays a considerable role in overcoming this challenge. Here, we show that language can play a similar role for deep RL agents in complex environments. While agents typically struggle to acquire relational and causal knowledge, augmenting their experience by training them to predict language descriptions and explanations can overcome these limitations. We show that language can help agents learn challenging relational tasks, and examine which aspects of language contribute to its benefits. We then show that explanations can help agents to infer not only relational but also causal structure. Language can shape the way that agents to generalize out-of-distribution from ambiguous, causally-confounded training, and explanations even allow agents to learn to perform experimental interventions to identify causal relationships. Our results suggest that language description and explanation may be powerful tools for improving agent learning and generalization.
Author Information
Andrew Lampinen (DeepMind)
I am interested in cognitive flexibility and generalization, and how these abilities are enabled by factors like language, memory, and embodiment. I am a Senior Research Scientist at DeepMind.
Nicholas Roy (DeepMind)
Ishita Dasgupta (DeepMind)
Stephanie Chan (DeepMind)
Allison Tam (DeepMind)
James McClelland (Stanford University and Deepmind)

I have been using neural networks to model human cognition since the late 1970's, and co-led the <em><Parallel Distributed Processing </em> research group with David Rumelhart in the early 1980's. My main interests lie in capturing human cognitive abilities with neural networks and in using what we know about human cognition to inform the development of better AI systems.
Chen Yan
Adam Santoro (DeepMind)
Neil Rabinowitz (DeepMind)
Jane Wang (DeepMind)
Feilx Hill (Deepmind)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Tell me why! Explanations support learning relational and causal structure »
Thu. Jul 21st through Fri the 22nd Room Hall E #928
More from the Same Authors
-
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2023 : Panel on Reasoning Capabilities of LLMs »
Guy Van den Broeck · Ishita Dasgupta · Subbarao Kambhampati · Jiajun Wu · Xi Victoria Lin · Samy Bengio · Beliz Gunel -
2023 : Reasoning Biases in Language Models »
Ishita Dasgupta -
2023 Poster: Distilling Internet-Scale Vision-Language Models into Embodied Agents »
Theodore R Sumers · Kenneth Marino · Arun Ahuja · Rob Fergus · Ishita Dasgupta -
2023 Poster: The Edge of Orthogonality: A Simple View of What Makes BYOL Tick »
Pierre Richemond · Allison Tam · Yunhao Tang · Florian Strub · Bilal Piot · Feilx Hill -
2022 : Session 2: Reasoning in Brains vs Machines »
Emily Mackevicius · Kim Stachenfeld · tyler bonnen · Ishita Dasgupta -
2022 Poster: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2022 Spotlight: A data-driven approach for learning to control computers »
Peter Humphreys · David Raposo · Tobias Pohlen · Gregory Thornton · Rachita Chhaparia · Alistair Muldal · Josh Abramson · Petko Georgiev · Adam Santoro · Timothy Lillicrap -
2022 Poster: Distinguishing rule- and exemplar-based generalization in learning systems »
Ishita Dasgupta · Erin Grant · Thomas Griffiths -
2022 Spotlight: Distinguishing rule- and exemplar-based generalization in learning systems »
Ishita Dasgupta · Erin Grant · Thomas Griffiths -
2020 : Invited Talk: Felix Hill »
Feilx Hill -
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Probing Emergent Semantics in Predictive Agents via Question Answering »
Abhishek Das · Federico Carnevale · Hamza Merzic · Laura Rimell · Rosalia Schneider · Josh Abramson · Alden Hung · Arun Ahuja · Stephen Clark · Greg Wayne · Feilx Hill -
2019 Poster: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Oral: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2018 Poster: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Oral: Measuring abstract reasoning in neural networks »
Adam Santoro · Feilx Hill · David GT Barrett · Ari S Morcos · Timothy Lillicrap -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Poster: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Been There, Done That: Meta-Learning with Episodic Recall »
Samuel Ritter · Jane Wang · Zeb Kurth-Nelson · Siddhant Jayakumar · Charles Blundell · Razvan Pascanu · Matthew Botvinick -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2017 Poster: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Talk: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Poster: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick -
2017 Talk: Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study »
Samuel Ritter · David GT Barrett · Adam Santoro · Matthew Botvinick