Timezone: »

 
Spotlight
Analyzing and Mitigating Interference in Neural Architecture Search
Jin Xu · Xu Tan · Kaitao Song · Renqian Luo · Yichong Leng · Tao Qin · Tie-Yan Liu · Jian Li

Tue Jul 19 07:55 AM -- 08:00 AM (PDT) @ Room 327 - 329
Weight sharing is a popular approach to reduce the training cost of neural architecture search (NAS) by reusing the weights of shared operators from previously trained child models. However, the rank correlation between the estimated accuracy and ground truth accuracy of those child models is low due to the interference among different child models caused by weight sharing. In this paper, we investigate the interference issue by sampling different child models and calculating the gradient similarity of shared operators, and observe that: 1) the interference on a shared operator between two child models is positively correlated with the number of different operators between them; 2) the interference is smaller when the inputs and outputs of the shared operator are more similar. Inspired by these two observations, we propose two approaches to mitigate the interference: 1) rather than randomly sampling child models for optimization, we propose a gradual modification scheme by modifying one operator between adjacent optimization steps to minimize the interference on the shared operators; 2) forcing the inputs and outputs of the operator across all child models to be similar to reduce the interference. Experiments on a BERT search space verify that mitigating interference via each of our proposed methods improves the rank correlation of super-pet and combining both methods can achieve better results. Our discovered architecture outperforms RoBERTa$_{\rm base}$ by 1.1 and 0.6 points and ELECTRA$_{\rm base}$ by 1.6 and 1.1 points on the dev and test set of GLUE benchmark. Extensive results on the BERT compression, reading comprehension and large-scale image classification tasks also demonstrate the effectiveness and generality of our proposed methods.

Author Information

Jin Xu (Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University)
Xu Tan (Microsoft Research)
Kaitao Song (Microsoft Research Asia)
Renqian Luo (Microsoft Research Asia)
Yichong Leng (University of Science and Technology of China)
Tao Qin (Microsoft Research Asia)
Tie-Yan Liu (Microsoft Research Asia)

Tie-Yan Liu is a principal researcher of Microsoft Research Asia, leading the research on artificial intelligence and machine learning. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. On the other hand, he has been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. His papers have been cited for tens of thousands of times in refereed conferences and journals. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, a distinguished member of the ACM, and a vice chair of the CIPS information retrieval technical committee.

Jian Li (IIIS)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors