Timezone: »

 
Poster
Surrogate Likelihoods for Variational Annealed Importance Sampling
Martin Jankowiak · Du Phan

Wed Jul 20 03:30 PM -- 05:30 PM (PDT) @ Hall E #727

Variational inference is a powerful paradigm for approximate Bayesian inference with a number of appealing properties, including support for model learning and data subsampling. By contrast MCMC methods like Hamiltonian Monte Carlo do not share these properties but remain attractive since, contrary to parametric methods, MCMC is asymptotically unbiased. For these reasons researchers have sought to combine the strengths of both classes of algorithms, with recent approaches coming closer to realizing this vision in practice. However, supporting data subsampling in these hybrid methods can be a challenge, a shortcoming that we address by introducing a surrogate likelihood that can be learned jointly with other variational parameters. We argue theoretically that the resulting algorithm allows an intuitive trade-off between inference fidelity and computational cost. In an extensive empirical comparison we show that our method performs well in practice and that it is well-suited for black-box inference in probabilistic programming frameworks.

Author Information

Martin Jankowiak (Broad Institute / Basis)
Du Phan (Google)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
    Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
  • 2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
    Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
  • 2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
    Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
  • 2020 : Invited talk 7: Flows in Probabilistic Modeling & Inference »
    Martin Jankowiak
  • 2020 Poster: Parametric Gaussian Process Regressors »
    Martin Jankowiak · Geoff Pleiss · Jacob Gardner