Timezone: »
Poster
$p$-Laplacian Based Graph Neural Networks
Guoji Fu · Peilin Zhao · Yatao Bian
Graph neural networks (GNNs) have demonstrated superior performance for semi-supervised node classification on graphs, as a result of their ability to exploit node features and topological information simultaneously. However, most GNNs implicitly assume that the labels of nodes and their neighbors in a graph are the same or consistent, which does not hold in heterophilic graphs, where the labels of linked nodes are likely to differ. Moreover, when the topology is non-informative for label prediction, ordinary GNNs may work significantly worse than simply applying multi-layer perceptrons (MLPs) on each node. To tackle the above problem, we propose a new $p$-Laplacian based GNN model, termed as $^p$GNN, whose message passing mechanism is derived from a discrete regularization framework and could be theoretically explained as an approximation of a polynomial graph filter defined on the spectral domain of $p$-Laplacians. The spectral analysis shows that the new message passing mechanism works as low-high-pass filters, thus making $^p$GNNs are effective on both homophilic and heterophilic graphs. Empirical studies on real-world and synthetic datasets validate our findings and demonstrate that $^p$GNNs significantly outperform several state-of-the-art GNN architectures on heterophilic benchmarks while achieving competitive performance on homophilic benchmarks. Moreover, $^p$GNNs can adaptively learn aggregation weights and are robust to noisy edges.
Author Information
Guoji Fu (Tencent AI Lab)
Peilin Zhao (Tencent AI Lab)
Yatao Bian (Tencent AI Lab)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: $p$-Laplacian Based Graph Neural Networks »
Wed. Jul 20th 08:30 -- 08:35 PM Room Ballroom 1 & 2
More from the Same Authors
-
2022 : Invariance Principle Meets Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · Kaili MA · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 : Pareto Invariant Risk Minimization »
Yongqiang Chen · Kaiwen Zhou · Yatao Bian · Binghui Xie · Kaili MA · Yonggang Zhang · Han Yang · Bo Han · James Cheng -
2023 : Towards Understanding Feature Learning in Out-of-Distribution Generalization »
Yongqiang Chen · Wei Huang · Kaiwen Zhou · Yatao Bian · Bo Han · James Cheng -
2022 : DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations »
Yatao Bian -
2022 : Hypergraph Convolutional Networks via Equivalence Between Hypergraphs and Undirected Graphs »
Jiying Zhang · fuyang li · Xi Xiao · Tingyang Xu · Yu Rong · Junzhou Huang · Yatao Bian -
2022 Poster: Efficient Test-Time Model Adaptation without Forgetting »
Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Yaofo Chen · Shijian Zheng · Peilin Zhao · Mingkui Tan -
2022 Spotlight: Efficient Test-Time Model Adaptation without Forgetting »
Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Yaofo Chen · Shijian Zheng · Peilin Zhao · Mingkui Tan -
2022 Poster: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Spotlight: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2021 Poster: AdaXpert: Adapting Neural Architecture for Growing Data »
Shuaicheng Niu · Jiaxiang Wu · Guanghui Xu · Yifan Zhang · Yong Guo · Peilin Zhao · Peng Wang · Mingkui Tan -
2021 Spotlight: AdaXpert: Adapting Neural Architecture for Growing Data »
Shuaicheng Niu · Jiaxiang Wu · Guanghui Xu · Yifan Zhang · Yong Guo · Peilin Zhao · Peng Wang · Mingkui Tan -
2021 Poster: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2021 Spotlight: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2020 Poster: From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models »
Aytunc Sahin · Yatao Bian · Joachim Buhmann · Andreas Krause -
2019 Poster: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2019 Oral: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2018 Poster: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2017 Poster: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek -
2017 Talk: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek