Timezone: »

Learning Stable Classifiers by Transferring Unstable Features
Yujia Bao · Shiyu Chang · Regina Barzilay

Thu Jul 21 03:00 PM -- 05:00 PM (PDT) @ Hall E #507

While unbiased machine learning models are essential for many applications, bias is a human-defined concept that can vary across tasks. Given only input-label pairs, algorithms may lack sufficient information to distinguish stable (causal) features from unstable (spurious) features. However, related tasks often share similar biases -- an observation we may leverage to develop stable classifiers in the transfer setting. In this work, we explicitly inform the target classifier about unstable features in the source tasks. Specifically, we derive a representation that encodes the unstable features by contrasting different data environments in the source task. We achieve robustness by clustering data of the target task according to this representation and minimizing the worst-case risk across these clusters. We evaluate our method on both text and image classifications. Empirical results demonstrate that our algorithm is able to maintain robustness on the target task for both synthetically generated environments and real-world environments. Our code will be available.

Author Information

Yujia Bao (MIT)
Shiyu Chang (UCSB)
Regina Barzilay (MIT CSAIL)
Regina Barzilay

Regina Barzilay is an Israeli-American computer scientist. She is a professor at the Massachusetts Institute of Technology and a faculty lead for artificial intelligence at the MIT Jameel Clinic. Her research interests are in natural language processing and applications of deep learning to chemistry and oncology.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors