Timezone: »
Autoencoders are the simplest neural network for unsupervised learning, and thus an ideal framework for studying feature learning. While a detailed understanding of the dynamics of linear autoencoders has recently been obtained, the study of non-linear autoencoders has been hindered by the technical difficulty of handling training data with non-trivial correlations – a fundamental prerequisite for feature extraction. Here, we study the dynamics of feature learning in non-linear, shallow autoencoders. We derive a set of asymptotically exact equations that describe the generalisation dynamics of autoencoders trained with stochastic gradient descent (SGD) in the limit of high-dimensional inputs. These equations reveal that autoencoders learn the leading principal components of their inputs sequentially. An analysis of the long-time dynamics explains the failure of sigmoidal autoencoders to learn with tied weights, and highlights the importance of training the bias in ReLU autoencoders. Building on previous results for linear networks, we analyse a modification of the vanilla SGD algorithm which allows learning of the exact principal components. Finally, we show that our equations accurately describe the generalisation dynamics of non-linear autoencoders on realistic datasets such as CIFAR10.
Author Information
Maria Refinetti (Laboratoire de Physique de l’Ecole Normale Supérieure Paris)
Sebastian Goldt (International School of Advanced Studies (SISSA))
I'm an assistant professor working on theories of learning in neural networks.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: The dynamics of representation learning in shallow, non-linear autoencoders »
Wed. Jul 20th through Thu the 21st Room Hall E #1311
More from the Same Authors
-
2023 Poster: Neural networks trained with SGD learn distributions of increasing complexity »
Maria Refinetti · Alessandro Ingrosso · Sebastian Goldt -
2022 Poster: Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics for Convex Losses in High-Dimension »
Bruno Loureiro · Cedric Gerbelot · Maria Refinetti · Gabriele Sicuro · FLORENT KRZAKALA -
2022 Poster: Maslow's Hammer in Catastrophic Forgetting: Node Re-Use vs. Node Activation »
Sebastian Lee · Stefano Sarao Mannelli · Claudia Clopath · Sebastian Goldt · Andrew Saxe -
2022 Spotlight: Maslow's Hammer in Catastrophic Forgetting: Node Re-Use vs. Node Activation »
Sebastian Lee · Stefano Sarao Mannelli · Claudia Clopath · Sebastian Goldt · Andrew Saxe -
2022 Spotlight: Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics for Convex Losses in High-Dimension »
Bruno Loureiro · Cedric Gerbelot · Maria Refinetti · Gabriele Sicuro · FLORENT KRZAKALA -
2021 Poster: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Poster: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Spotlight: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Spotlight: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Poster: Continual Learning in the Teacher-Student Setup: Impact of Task Similarity »
Sebastian Lee · Sebastian Goldt · Andrew Saxe -
2021 Spotlight: Continual Learning in the Teacher-Student Setup: Impact of Task Similarity »
Sebastian Lee · Sebastian Goldt · Andrew Saxe -
2020 Poster: Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime »
Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Analyzing the dynamics of online learning in over-parameterized two-layer neural networks »
Sebastian Goldt