Timezone: »
In just the past couple of years, we have seen significant advances in the capabilities of (Large) Language Models. One of the most striking capabilities of these systems is knowledge retrieval — Language Models can answer a diverse set of questions, which differ substantially in the domain knowledge needed for their responses, and their input structure. The precise methods for knowledge retrieval vary from the language model directly generating a response (parametric approaches) to a combination of generation and referencing an external knowledge corpus, e.g. retrieval augmented generation, to primarily using an external knowledge corpus with language model embeddings (semi-parametric approaches.) Despite the rapid advances, there remain many pressing open questions on the limits of knowledge retrieval with language models, and connections between these different approaches. How factual are generated responses, and how does this vary with question complexity, model scale, and importantly, different methods of knowledge retrieval? How important is the role of (self-supervised/supervised) pretraining? What are the tradeoffs between few-shot (prompt based) approaches and finetuning when adapting to novel domains? And relatedly, to what extent do different knowledge retrieval approaches generalize to unseen settings? This workshop seeks to bring together a diverse set of researchers across NLP, Machine Learning and Theory to discuss these questions. We hope to share current findings and challenges, identify promising directions for future study, and most importantly, build a community around this topic at this pivotal time.
Fri 5:45 a.m. - 6:00 a.m.
|
Opening Remarks
(
Introduction
)
|
🔗 |
Fri 6:00 a.m. - 6:30 a.m.
|
Sebastian Riedel
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 6:30 a.m. - 7:00 a.m.
|
Nils Reimers
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 7:00 a.m. - 7:30 a.m.
|
Break
|
🔗 |
Fri 7:30 a.m. - 8:00 a.m.
|
John Schulman
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 8:00 a.m. - 9:00 a.m.
|
Poster Session
|
🔗 |
Fri 9:00 a.m. - 10:30 a.m.
|
Lunch
|
🔗 |
Fri 10:30 a.m. - 11:00 a.m.
|
Jimmy Lin
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 11:00 a.m. - 11:30 a.m.
|
Ellie Pavlick
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 11:30 a.m. - 11:40 a.m.
|
Contributed Talk 1: Dialog Inpainting: Turning Documents into Dialogs
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 11:40 a.m. - 11:50 a.m.
|
Contributed Talk 2: Huge Frozen Language Models as Readers for Open-Domain Question Answering
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 11:50 a.m. - 12:00 p.m.
|
Contributed Talk 3: LinkBERT: Pretraining Language Models with Document Links
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 12:00 p.m. - 12:30 p.m.
|
Break
|
🔗 |
Fri 12:30 p.m. - 1:00 p.m.
|
Danqi Chen
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 1:00 p.m. - 1:30 p.m.
|
Quoc Le
(
Talk
)
SlidesLive Video » |
🔗 |
Fri 1:30 p.m. - 2:30 p.m.
|
Panel
SlidesLive Video » |
🔗 |
Fri 2:30 p.m. - 2:40 p.m.
|
Closing Remarks
|
🔗 |
Author Information
Maithra Raghu (Samaya AI)
Urvashi Khandelwal (Google)
Chiyuan Zhang (Google Research)
Matei Zaharia (Stanford and Databricks)
Alexander Rush (Cornell University)
More from the Same Authors
-
2021 : Randomized Response with Prior and Applications to Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 : Have the Cake and Eat It Too? Higher Accuracy and Less Expense when Using Multi-label ML APIs Online »
Lingjiao Chen · James Zou · Matei Zaharia -
2021 : Machine Learning API Shift Assessments: Change is Coming! »
Lingjiao Chen · James Zou · Matei Zaharia -
2023 : Counterfactual Memorization in Neural Language Models »
Chiyuan Zhang · Daphne Ippolito · Katherine Lee · Matthew Jagielski · Florian Tramer · Nicholas Carlini -
2023 : Improve Model Inference Cost with Image Gridding »
Shreyas Krishnaswamy · Lisa Dunlap · Lingjiao Chen · Matei Zaharia · James Zou · Joseph Gonzalez -
2023 : On the Reproducibility of Data Valuation under Learning Stochasticity »
Jiachen Wang · Feiyang Kang · Chiyuan Zhang · Ruoxi Jia · Prateek Mittal -
2023 Oral: Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding »
Kenton Lee · Mandar Joshi · Iulia Turc · Hexiang Hu · Fangyu Liu · Julian M Eisenschlos · Urvashi Khandelwal · Peter Shaw · Ming-Wei Chang · Kristina Toutanova -
2023 Poster: Can Neural Network Memorization Be Localized? »
Pratyush Maini · Michael Mozer · Hanie Sedghi · Zachary Lipton · Zico Kolter · Chiyuan Zhang -
2023 Poster: Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding »
Kenton Lee · Mandar Joshi · Iulia Turc · Hexiang Hu · Fangyu Liu · Julian M Eisenschlos · Urvashi Khandelwal · Peter Shaw · Ming-Wei Chang · Kristina Toutanova -
2023 Poster: On User-Level Private Convex Optimization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi · Raghu Meka · Chiyuan Zhang -
2022 : How Neural Networks See, Learn and Forget »
Maithra Raghu -
2022 : What Can Data-Centric AI Learn from Data Engineering? »
Matei Zaharia -
2022 Poster: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Spotlight: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2021 Poster: Memory-Efficient Pipeline-Parallel DNN Training »
Deepak Narayanan · Amar Phanishayee · Kaiyu Shi · Xie Chen · Matei Zaharia -
2021 Spotlight: Memory-Efficient Pipeline-Parallel DNN Training »
Deepak Narayanan · Amar Phanishayee · Kaiyu Shi · Xie Chen · Matei Zaharia -
2021 Poster: Understanding Invariance via Feedforward Inversion of Discriminatively Trained Classifiers »
Piotr Teterwak · Chiyuan Zhang · Dilip Krishnan · Michael Mozer -
2021 Poster: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer -
2021 Spotlight: Understanding Invariance via Feedforward Inversion of Discriminatively Trained Classifiers »
Piotr Teterwak · Chiyuan Zhang · Dilip Krishnan · Michael Mozer -
2021 Oral: Characterizing Structural Regularities of Labeled Data in Overparameterized Models »
Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer -
2019 Workshop: Identifying and Understanding Deep Learning Phenomena »
Hanie Sedghi · Samy Bengio · Kenji Hata · Aleksander Madry · Ari Morcos · Behnam Neyshabur · Maithra Raghu · Ali Rahimi · Ludwig Schmidt · Ying Xiao -
2019 Poster: LIT: Learned Intermediate Representation Training for Model Compression »
Animesh Koratana · Daniel Kang · Peter Bailis · Matei Zaharia -
2019 Oral: LIT: Learned Intermediate Representation Training for Model Compression »
Animesh Koratana · Daniel Kang · Peter Bailis · Matei Zaharia -
2019 Poster: Direct Uncertainty Prediction for Medical Second Opinions »
Maithra Raghu · Katy Blumer · Rory sayres · Ziad Obermeyer · Bobby Kleinberg · Sendhil Mullainathan · Jon Kleinberg -
2019 Oral: Direct Uncertainty Prediction for Medical Second Opinions »
Maithra Raghu · Katy Blumer · Rory sayres · Ziad Obermeyer · Bobby Kleinberg · Sendhil Mullainathan · Jon Kleinberg -
2018 Poster: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Oral: Can Deep Reinforcement Learning Solve Erdos-Selfridge-Spencer Games? »
Maithra Raghu · Alexander Irpan · Jacob Andreas · Bobby Kleinberg · Quoc Le · Jon Kleinberg -
2018 Poster: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2018 Oral: Machine Theory of Mind »
Neil Rabinowitz · Frank Perbet · Francis Song · Chiyuan Zhang · S. M. Ali Eslami · Matthew Botvinick -
2017 Poster: On the Expressive Power of Deep Neural Networks »
Maithra Raghu · Ben Poole · Surya Ganguli · Jon Kleinberg · Jascha Sohl-Dickstein -
2017 Talk: On the Expressive Power of Deep Neural Networks »
Maithra Raghu · Ben Poole · Surya Ganguli · Jon Kleinberg · Jascha Sohl-Dickstein