Timezone: »
Generalized linear models (GLMs) such as logistic regression are among the most widely used arms in data analyst’s repertoire and often used on sensitive datasets. A large body of prior works that investigate GLMs under differential privacy (DP) constraints provide only private point estimates of the regression coefficients, and are not able to quantify parameter uncertainty.
In this work, with logistic and Poisson regression as running examples, we introduce a generic noise-aware DP Bayesian inference method for a GLM at hand, given a noisy sum of summary statistics. Quantifying uncertainty allows us to determine which of the regression coefficients are statistically significantly different from zero. We provide a previously unknown tight privacy analysis and experimentally demonstrate that the posteriors obtained from our model, while adhering to strong privacy guarantees, are close to the non-private posteriors.
Author Information
Tejas Kulkarni (Aalto University)
Joonas Jälkö (Aalto University)
Antti Koskela (University of Helsinki)
Samuel Kaski (Aalto University and University of Manchester)
Antti Honkela (University of Helsinki)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Differentially Private Bayesian Inference for Generalized Linear Models »
Fri. Jul 23rd 04:00 -- 06:00 AM Room
More from the Same Authors
-
2021 : Tight Accounting in the Shuffle Model of Differential Privacy »
Antti Koskela · Mikko A Heikkilä · Antti Honkela -
2021 : Differentially Private Hamiltonian Monte Carlo »
Ossi Räisä · Antti Koskela · Antti Honkela -
2021 : Gaussian Processes with Differential Privacy »
Antti Honkela -
2021 : Computing Differential Privacy Guarantees for Heterogeneous Compositions Using FFT »
Antti Koskela · Antti Honkela -
2023 : Augmenting Bayesian Optimization with Preference-based Expert Feedback »
Daolang Huang · Louis Filstroff · Petrus Mikkola · Runkai Zheng · Milica Todorovic · Samuel Kaski -
2023 : Bayesian Active Meta-Learning under Prior Misspecification »
Sabina Sloman · Ayush Bharti · Samuel Kaski -
2023 Poster: Optimally-weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference »
Ayush Bharti · Masha Naslidnyk · Oscar Key · Samuel Kaski · Francois-Xavier Briol -
2022 Poster: Approximate Bayesian Computation with Domain Expert in the Loop »
Ayush Bharti · Louis Filstroff · Samuel Kaski -
2022 Spotlight: Approximate Bayesian Computation with Domain Expert in the Loop »
Ayush Bharti · Louis Filstroff · Samuel Kaski -
2022 Poster: Tackling covariate shift with node-based Bayesian neural networks »
Trung Trinh · Markus Heinonen · Luigi Acerbi · Samuel Kaski -
2022 Oral: Tackling covariate shift with node-based Bayesian neural networks »
Trung Trinh · Markus Heinonen · Luigi Acerbi · Samuel Kaski -
2020 Poster: Projective Preferential Bayesian Optimization »
Petrus Mikkola · Milica Todorović · Jari Järvi · Patrick Rinke · Samuel Kaski -
2019 : Networking Lunch (provided) + Poster Session »
Abraham Stanway · Alex Robson · Aneesh Rangnekar · Ashesh Chattopadhyay · Ashley Pilipiszyn · Benjamin LeRoy · Bolong Cheng · Ce Zhang · Chaopeng Shen · Christian Schroeder · Christian Clough · Clement DUHART · Clement Fung · Cozmin Ududec · Dali Wang · David Dao · di wu · Dimitrios Giannakis · Dino Sejdinovic · Doina Precup · Duncan Watson-Parris · Gege Wen · George Chen · Gopal Erinjippurath · Haifeng Li · Han Zou · Herke van Hoof · Hillary A Scannell · Hiroshi Mamitsuka · Hongbao Zhang · Jaegul Choo · James Wang · James Requeima · Jessica Hwang · Jinfan Xu · Johan Mathe · Jonathan Binas · Joonseok Lee · Kalai Ramea · Kate Duffy · Kevin McCloskey · Kris Sankaran · Lester Mackey · Letif Mones · Loubna Benabbou · Lynn Kaack · Matthew Hoffman · Mayur Mudigonda · Mehrdad Mahdavi · Michael McCourt · Mingchao Jiang · Mohammad Mahdi Kamani · Neel Guha · Niccolo Dalmasso · Nick Pawlowski · Nikola Milojevic-Dupont · Paulo Orenstein · Pedram Hassanzadeh · Pekka Marttinen · Ramesh Nair · Sadegh Farhang · Samuel Kaski · Sandeep Manjanna · Sasha Luccioni · Shuby Deshpande · Soo Kim · Soukayna Mouatadid · Sunghyun Park · Tao Lin · Telmo Felgueira · Thomas Hornigold · Tianle Yuan · Tom Beucler · Tracy Cui · Volodymyr Kuleshov · Wei Yu · yang song · Ydo Wexler · Yoshua Bengio · Zhecheng Wang · Zhuangfang Yi · Zouheir Malki -
2019 Poster: Active Learning for Decision-Making from Imbalanced Observational Data »
Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski -
2019 Oral: Active Learning for Decision-Making from Imbalanced Observational Data »
Iiris Sundin · Peter Schulam · Eero Siivola · Aki Vehtari · Suchi Saria · Samuel Kaski -
2017 Workshop: Private and Secure Machine Learning »
Antti Honkela · Kana Shimizu · Samuel Kaski