Timezone: »
While maximizing deep neural networks' (DNNs') acceleration efficiency requires a joint search/design of three different yet highly coupled aspects, including the networks, bitwidths, and accelerators, the challenges associated with such a joint search have not yet been fully understood and addressed. The key challenges include (1) the dilemma of whether to explode the memory consumption due to the huge joint space or achieve sub-optimal designs, (2) the discrete nature of the accelerator design space that is coupled yet different from that of the networks and bitwidths, and (3) the chicken and egg problem associated with network-accelerator co-search, i.e., co-search requires operation-wise hardware cost, which is lacking during search as the optimal accelerator depending on the whole network is still unknown during search. To tackle these daunting challenges towards optimal and fast development of DNN accelerators, we propose a framework dubbed Auto-NBA to enable jointly searching for the Networks, Bitwidths, and Accelerators, by efficiently localizing the optimal design within the huge joint design space for each target dataset and acceleration specification. Our Auto-NBA integrates a heterogeneous sampling strategy to achieve unbiased search with constant memory consumption, and a novel joint-search pipeline equipped with a generic differentiable accelerator search engine. Extensive experiments and ablation studies validate that both Auto-NBA generated networks and accelerators consistently outperform state-of-the-art designs (including co-search/exploration techniques, hardware-aware NAS methods, and DNN accelerators), in terms of search time, task accuracy, and accelerator efficiency. Our codes are available at: https://github.com/RICE-EIC/Auto-NBA.
Author Information
Yonggan Fu (Rice University)
Yongan Zhang (Rice University)
Yang Zhang (MIT-IBM Watson AI Lab)
David Cox (MIT-IBM Watson AI Lab)
Yingyan Lin (Rice University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators »
Wed. Jul 21st 01:45 -- 01:50 AM Room
More from the Same Authors
-
2023 Poster: Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models »
Guanhua Zhang · Jiabao Ji · Yang Zhang · Mo Yu · Tommi Jaakkola · Shiyu Chang -
2023 Poster: Master-ASR: Achieving Multilingual Scalability and Low-Resource Adaptation in ASR with Modular Learning »
Zhongzhi Yu · Yang Zhang · Kaizhi Qian · Cheng Wan · Yonggan Fu · Yongan Zhang · Yingyan (Celine) Lin -
2023 Poster: PromptBoosting: Black-Box Text Classification with Ten Forward Passes »
Bairu Hou · Joe O'Connor · Jacob Andreas · Shiyu Chang · Yang Zhang -
2022 Poster: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Poster: ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers »
Kaizhi Qian · Yang Zhang · Heting Gao · Junrui Ni · Cheng-I Lai · David Cox · Mark Hasegawa-Johnson · Shiyu Chang -
2022 Spotlight: Data-Efficient Double-Win Lottery Tickets from Robust Pre-training »
Tianlong Chen · Zhenyu Zhang · Sijia Liu · Yang Zhang · Shiyu Chang · Zhangyang “Atlas” Wang -
2022 Spotlight: ContentVec: An Improved Self-Supervised Speech Representation by Disentangling Speakers »
Kaizhi Qian · Yang Zhang · Heting Gao · Junrui Ni · Cheng-I Lai · David Cox · Mark Hasegawa-Johnson · Shiyu Chang -
2022 Poster: ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks »
Haoran You · Baopu Li · Shi Huihong · Yonggan Fu · Yingyan Lin -
2022 Poster: DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks »
Yonggan Fu · Haichuan Yang · Jiayi Yuan · Meng Li · Cheng Wan · Raghuraman Krishnamoorthi · Vikas Chandra · Yingyan Lin -
2022 Spotlight: DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware Efficiency of Compact Neural Networks »
Yonggan Fu · Haichuan Yang · Jiayi Yuan · Meng Li · Cheng Wan · Raghuraman Krishnamoorthi · Vikas Chandra · Yingyan Lin -
2022 Spotlight: ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks »
Haoran You · Baopu Li · Shi Huihong · Yonggan Fu · Yingyan Lin -
2021 Poster: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2021 Poster: Double-Win Quant: Aggressively Winning Robustness of Quantized Deep Neural Networks via Random Precision Training and Inference »
Yonggan Fu · Qixuan Yu · Meng Li · Vikas Chandra · Yingyan Lin -
2021 Spotlight: Double-Win Quant: Aggressively Winning Robustness of Quantized Deep Neural Networks via Random Precision Training and Inference »
Yonggan Fu · Qixuan Yu · Meng Li · Vikas Chandra · Yingyan Lin -
2021 Oral: Global Prosody Style Transfer Without Text Transcriptions »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson -
2020 Poster: Invariant Rationalization »
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola -
2020 Poster: Unsupervised Speech Decomposition via Triple Information Bottleneck »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Mark Hasegawa-Johnson · David Cox -
2020 Poster: AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks »
Yonggan Fu · Wuyang Chen · Haotao Wang · Haoran Li · Yingyan Lin · Zhangyang “Atlas” Wang -
2019 Workshop: Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR) »
Sujith Ravi · Zornitsa Kozareva · Lixin Fan · Max Welling · Yurong Chen · Werner Bailer · Brian Kulis · Haoji Hu · Jonathan Dekhtiar · Yingyan Lin · Diana Marculescu -
2019 Poster: AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Xuesong Yang · Mark Hasegawa-Johnson -
2019 Oral: AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss »
Kaizhi Qian · Yang Zhang · Shiyu Chang · Xuesong Yang · Mark Hasegawa-Johnson -
2018 Poster: Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions »
Junru Wu · Yue Wang · Zhenyu Wu · Zhangyang Wang · Ashok Veeraraghavan · Yingyan Lin -
2018 Oral: Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions »
Junru Wu · Yue Wang · Zhenyu Wu · Zhangyang Wang · Ashok Veeraraghavan · Yingyan Lin