Timezone: »
Existing evaluation suites for multi-agent reinforcement learning (MARL) do not assess generalization to novel situations as their primary objective (unlike supervised learning benchmarks). Our contribution, Melting Pot, is a MARL evaluation suite that fills this gap and uses reinforcement learning to reduce the human labor required to create novel test scenarios. This works because one agent's behavior constitutes (part of) another agent's environment. To demonstrate scalability, we have created over 80 unique test scenarios covering a broad range of research topics such as social dilemmas, reciprocity, resource sharing, and task partitioning. We apply these test scenarios to standard MARL training algorithms, and demonstrate how Melting Pot reveals weaknesses not apparent from training performance alone.
Author Information
Joel Z Leibo (DeepMind)
Edgar Duenez-Guzman (DeepMind)
Alexander Vezhnevets (DeepMind)
John Agapiou (DeepMind)
Peter Sunehag
Raphael Koster (DeepMind)
Jayd Matyas (DeepMind)
Charles Beattie (DeepMind Technologies Limited)
Igor Mordatch (Google Brain)
Thore Graepel (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Scalable Evaluation of Multi-Agent Reinforcement Learning with Melting Pot »
Tue. Jul 20th 12:00 -- 12:20 PM Room
More from the Same Authors
-
2021 : Decision Transformer: Reinforcement Learning via Sequence Modeling »
Lili Chen · Kevin Lu · Aravind Rajeswaran · Kimin Lee · Aditya Grover · Michael Laskin · Pieter Abbeel · Aravind Srinivas · Igor Mordatch -
2022 Poster: Blocks Assemble! Learning to Assemble with Large-Scale Structured Reinforcement Learning »
Seyed Kamyar Seyed Ghasemipour · Satoshi Kataoka · Byron David · Daniel Freeman · Shixiang Gu · Igor Mordatch -
2022 Poster: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Blocks Assemble! Learning to Assemble with Large-Scale Structured Reinforcement Learning »
Seyed Kamyar Seyed Ghasemipour · Satoshi Kataoka · Byron David · Daniel Freeman · Shixiang Gu · Igor Mordatch -
2022 Poster: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2022 Spotlight: Learning Iterative Reasoning through Energy Minimization »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2021 Spotlight: Improved Contrastive Divergence Training of Energy-Based Models »
Yilun Du · Shuang Li · Josh Tenenbaum · Igor Mordatch -
2021 Poster: Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers »
Luke Marris · Paul Muller · Marc Lanctot · Karl Tuyls · Thore Graepel -
2021 Poster: Model-Based Reinforcement Learning via Latent-Space Collocation »
Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine -
2021 Spotlight: Model-Based Reinforcement Learning via Latent-Space Collocation »
Oleh Rybkin · Chuning Zhu · Anusha Nagabandi · Kostas Daniilidis · Igor Mordatch · Sergey Levine -
2021 Spotlight: Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers »
Luke Marris · Paul Muller · Marc Lanctot · Karl Tuyls · Thore Graepel -
2020 : Energy-Based Models for Object-Oriented Learning »
Igor Mordatch -
2020 Poster: One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control »
Wenlong Huang · Igor Mordatch · Deepak Pathak -
2020 Poster: A Game Theoretic Framework for Model Based Reinforcement Learning »
Aravind Rajeswaran · Igor Mordatch · Vikash Kumar -
2020 Poster: OPtions as REsponses: Grounding behavioural hierarchies in multi-agent reinforcement learning »
Alexander Vezhnevets · Yuhuai Wu · Maria Eckstein · RĂ©mi Leblond · Joel Z Leibo -
2020 Tutorial: Model-Based Methods in Reinforcement Learning »
Igor Mordatch · Jessica Hamrick -
2019 Poster: Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning »
Natasha Jaques · Angeliki Lazaridou · Edward Hughes · Caglar Gulcehre · Pedro Ortega · DJ Strouse · Joel Z Leibo · Nando de Freitas -
2019 Oral: Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning »
Natasha Jaques · Angeliki Lazaridou · Edward Hughes · Caglar Gulcehre · Pedro Ortega · DJ Strouse · Joel Z Leibo · Nando de Freitas -
2019 Poster: Open-ended learning in symmetric zero-sum games »
David Balduzzi · Marta Garnelo · Yoram Bachrach · Wojciech Czarnecki · Julien Perolat · Max Jaderberg · Thore Graepel -
2019 Oral: Open-ended learning in symmetric zero-sum games »
David Balduzzi · Marta Garnelo · Yoram Bachrach · Wojciech Czarnecki · Julien Perolat · Max Jaderberg · Thore Graepel -
2018 Poster: The Mechanics of n-Player Differentiable Games »
David Balduzzi · Sebastien Racaniere · James Martens · Jakob Foerster · Karl Tuyls · Thore Graepel -
2018 Oral: The Mechanics of n-Player Differentiable Games »
David Balduzzi · Sebastien Racaniere · James Martens · Jakob Foerster · Karl Tuyls · Thore Graepel -
2017 Poster: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Talk: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu