Timezone: »
We address the problem of causal effect estima-tion in the presence of unobserved confounding,but where proxies for the latent confounder(s) areobserved. We propose two kernel-based meth-ods for nonlinear causal effect estimation in thissetting: (a) a two-stage regression approach, and(b) a maximum moment restriction approach. Wefocus on the proximal causal learning setting, butour methods can be used to solve a wider classof inverse problems characterised by a Fredholmintegral equation. In particular, we provide a uni-fying view of two-stage and moment restrictionapproaches for solving this problem in a nonlin-ear setting. We provide consistency guaranteesfor each algorithm, and demonstrate that these ap-proaches achieve competitive results on syntheticdata and data simulating a real-world task. In par-ticular, our approach outperforms earlier methodsthat are not suited to leveraging proxy variables.
Author Information
Afsaneh Mastouri (University College London)
Yuchen Zhu (University College London)
Limor Gultchin (University of Oxford)
Anna Korba (CREST/ENSAE)
Ricardo Silva (University College London)
Matt J. Kusner (University College London)
Arthur Gretton (Gatsby Computational Neuroscience Unit)
Krikamol Muandet (Max Planck Institute for Intelligent Systems)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction »
Wed. Jul 21st 02:40 -- 02:45 PM Room
More from the Same Authors
-
2021 : Algorithmic Recourse in Partially and Fully Confounded Settings Through Bounding Counterfactual Effects »
Julius von Kügelgen · Nikita Agarwal · Jakob Zeitler · Afsaneh Mastouri · Bernhard Schölkopf -
2022 : Adapting to Shifts in Latent Confounders via Observed Concepts and Proxies »
Matt Kusner · Ibrahim Alabdulmohsin · Stephen Pfohl · Olawale Salaudeen · Arthur Gretton · Sanmi Koyejo · Jessica Schrouff · Alexander D'Amour -
2023 Poster: On the Relationship Between Explanation and Prediction: A Causal View »
Amir-Hossein Karimi · Krikamol Muandet · Simon Kornblith · Bernhard Schölkopf · Been Kim -
2023 Poster: Exponential Smoothing for Off-Policy Learning »
Imad AOUALI · Victor-Emmanuel Brunel · David Rohde · Anna Korba -
2023 Poster: A Kernel Stein Test of Goodness of Fit for Sequential Models »
Jerome Baum · Heishiro Kanagawa · Arthur Gretton -
2023 Oral: Exponential Smoothing for Off-Policy Learning »
Imad AOUALI · Victor-Emmanuel Brunel · David Rohde · Anna Korba -
2023 Workshop: The Second Workshop on Spurious Correlations, Invariance and Stability »
Yoav Wald · Claudia Shi · Aahlad Puli · Amir Feder · Limor Gultchin · Mark Goldstein · Maggie Makar · Victor Veitch · Uri Shalit -
2022 Workshop: Spurious correlations, Invariance, and Stability (SCIS) »
Aahlad Puli · Maggie Makar · Victor Veitch · Yoav Wald · Mark Goldstein · Limor Gultchin · Angela Zhou · Uri Shalit · Suchi Saria -
2022 Poster: Importance Weighted Kernel Bayes' Rule »
Liyuan Xu · Yutian Chen · Arnaud Doucet · Arthur Gretton -
2022 Spotlight: Importance Weighted Kernel Bayes' Rule »
Liyuan Xu · Yutian Chen · Arnaud Doucet · Arthur Gretton -
2022 Poster: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Poster: Accurate Quantization of Measures via Interacting Particle-based Optimization »
Lantian Xu · Anna Korba · Dejan Slepcev -
2022 Spotlight: Accurate Quantization of Measures via Interacting Particle-based Optimization »
Lantian Xu · Anna Korba · Dejan Slepcev -
2022 Spotlight: Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions »
Heiner Kremer · Jia-Jie Zhu · Krikamol Muandet · Bernhard Schölkopf -
2022 Tutorial: Sampling as First-Order Optimization over a space of probability measures »
Anna Korba · Adil Salim -
2021 Poster: Operationalizing Complex Causes: A Pragmatic View of Mediation »
Limor Gultchin · David Watson · Matt J. Kusner · Ricardo Silva -
2021 Spotlight: Operationalizing Complex Causes: A Pragmatic View of Mediation »
Limor Gultchin · David Watson · Matt J. Kusner · Ricardo Silva -
2021 Poster: Learning Binary Decision Trees by Argmin Differentiation »
Valentina Zantedeschi · Matt J. Kusner · Vlad Niculae -
2021 Spotlight: Learning Binary Decision Trees by Argmin Differentiation »
Valentina Zantedeschi · Matt J. Kusner · Vlad Niculae -
2021 Poster: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Poster: Kernel Stein Discrepancy Descent »
Anna Korba · Pierre-Cyril Aubin-Frankowski · Szymon Majewski · Pierre Ablin -
2021 Spotlight: Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression »
Junhyung Park · Uri Shalit · Bernhard Schölkopf · Krikamol Muandet -
2021 Oral: Kernel Stein Discrepancy Descent »
Anna Korba · Pierre-Cyril Aubin-Frankowski · Szymon Majewski · Pierre Ablin -
2020 Poster: Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data »
Tamara Fernandez · Arthur Gretton · Nicolas Rivera · Wenkai Xu -
2020 Poster: Learning Deep Kernels for Non-Parametric Two-Sample Tests »
Feng Liu · Wenkai Xu · Jie Lu · Guangquan Zhang · Arthur Gretton · D.J. Sutherland -
2019 : Invited Talk - Arthur Gretton: Relative goodness-of-fit tests for models with latent variables. »
Arthur Gretton -
2019 Poster: Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops »
Limor Gultchin · Genevieve Patterson · Nancy Baym · Nathaniel Swinger · Adam Kalai -
2019 Poster: Making Decisions that Reduce Discriminatory Impacts »
Matt J. Kusner · Chris Russell · Joshua Loftus · Ricardo Silva -
2019 Oral: Making Decisions that Reduce Discriminatory Impacts »
Matt J. Kusner · Chris Russell · Joshua Loftus · Ricardo Silva -
2019 Oral: Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops »
Limor Gultchin · Genevieve Patterson · Nancy Baym · Nathaniel Swinger · Adam Kalai -
2019 Poster: Learning deep kernels for exponential family densities »
Li Kevin Wenliang · D.J. Sutherland · Heiko Strathmann · Arthur Gretton -
2019 Oral: Learning deep kernels for exponential family densities »
Li Kevin Wenliang · D.J. Sutherland · Heiko Strathmann · Arthur Gretton -
2018 Poster: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Oral: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Poster: TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service »
Amartya Sanyal · Matt Kusner · Adria Gascon · Varun Kanade -
2018 Oral: TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service »
Amartya Sanyal · Matt Kusner · Adria Gascon · Varun Kanade -
2017 Poster: An Adaptive Test of Independence with Analytic Kernel Embeddings »
Wittawat Jitkrittum · Zoltan Szabo · Arthur Gretton -
2017 Poster: Grammar Variational Autoencoder »
Matt J. Kusner · Brooks Paige · Jose Miguel Hernandez-Lobato -
2017 Talk: Grammar Variational Autoencoder »
Matt J. Kusner · Brooks Paige · Jose Miguel Hernandez-Lobato -
2017 Talk: An Adaptive Test of Independence with Analytic Kernel Embeddings »
Wittawat Jitkrittum · Zoltan Szabo · Arthur Gretton