Timezone: »
We propose a method for learning linear models whose predictive performance is robust to causal interventions on unobserved variables, when noisy proxies of those variables are available. Our approach takes the form of a regularization term that trades off between in-distribution performance and robustness to interventions. Under the assumption of a linear structural causal model, we show that a single proxy can be used to create estimators that are prediction optimal under interventions of bounded strength. This strength depends on the magnitude of the measurement noise in the proxy, which is, in general, not identifiable. In the case of two proxy variables, we propose a modified estimator that is prediction optimal under interventions up to a known strength. We further show how to extend these estimators to scenarios where additional information about the "test time" intervention is available during training. We evaluate our theoretical findings in synthetic experiments and using real data of hourly pollution levels across several cities in China.
Author Information
Michael Oberst (MIT)
Nikolaj Thams (University of Copenhagen)
Jonas Peters (University of Copenhagen)
David Sontag (Massachusetts Institute of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Regularizing towards Causal Invariance: Linear Models with Proxies »
Fri. Jul 23rd 04:00 -- 06:00 AM Room Virtual
More from the Same Authors
-
2021 : Invariant Policy Learning: A Causal Perspective »
Sorawit Saengkyongam · Nikolaj Thams · Jonas Peters · Niklas Pfister -
2022 : Evaluating Robustness to Dataset Shift via Parametric Robustness Sets »
Michael Oberst · Nikolaj Thams · David Sontag -
2022 : Evaluating Robustness to Dataset Shift via Parametric Robustness Sets »
Nikolaj Thams · Michael Oberst · David Sontag -
2022 Poster: Invariant Ancestry Search »
Phillip Bredahl Mogensen · Nikolaj Thams · Jonas Peters -
2022 Spotlight: Invariant Ancestry Search »
Phillip Bredahl Mogensen · Nikolaj Thams · Jonas Peters -
2022 Poster: Exploiting Independent Instruments: Identification and Distribution Generalization »
Sorawit Saengkyongam · Leonard Henckel · Niklas Pfister · Jonas Peters -
2022 Poster: Sample Efficient Learning of Predictors that Complement Humans »
Mohammad-Amin Charusaie · Hussein Mozannar · David Sontag · Samira Samadi -
2022 Poster: Co-training Improves Prompt-based Learning for Large Language Models »
Hunter Lang · Monica Agrawal · Yoon Kim · David Sontag -
2022 Spotlight: Sample Efficient Learning of Predictors that Complement Humans »
Mohammad-Amin Charusaie · Hussein Mozannar · David Sontag · Samira Samadi -
2022 Spotlight: Exploiting Independent Instruments: Identification and Distribution Generalization »
Sorawit Saengkyongam · Leonard Henckel · Niklas Pfister · Jonas Peters -
2022 Spotlight: Co-training Improves Prompt-based Learning for Large Language Models »
Hunter Lang · Monica Agrawal · Yoon Kim · David Sontag -
2021 Poster: Neural Pharmacodynamic State Space Modeling »
Zeshan Hussain · Rahul G. Krishnan · David Sontag -
2021 Poster: Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch) »
Hunter Lang · David Sontag · Aravindan Vijayaraghavan -
2021 Oral: Graph Cuts Always Find a Global Optimum for Potts Models (With a Catch) »
Hunter Lang · David Sontag · Aravindan Vijayaraghavan -
2021 Spotlight: Neural Pharmacodynamic State Space Modeling »
Zeshan Hussain · Rahul G. Krishnan · David Sontag -
2020 Poster: Estimation of Bounds on Potential Outcomes For Decision Making »
Maggie Makar · Fredrik Johansson · John Guttag · David Sontag -
2020 Poster: Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models »
Rares-Darius Buhai · Yoni Halpern · Yoon Kim · Andrej Risteski · David Sontag -
2020 Poster: Consistent Estimators for Learning to Defer to an Expert »
Hussein Mozannar · David Sontag -
2019 Poster: Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models »
Michael Oberst · David Sontag -
2019 Oral: Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models »
Michael Oberst · David Sontag -
2018 Poster: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2018 Oral: Semi-Amortized Variational Autoencoders »
Yoon Kim · Sam Wiseman · Andrew Miller · David Sontag · Alexander Rush -
2017 Poster: Estimating individual treatment effect: generalization bounds and algorithms »
Uri Shalit · Fredrik D Johansson · David Sontag -
2017 Talk: Estimating individual treatment effect: generalization bounds and algorithms »
Uri Shalit · Fredrik D Johansson · David Sontag -
2017 Poster: Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation »
Yacine Jernite · Anna Choromanska · David Sontag -
2017 Talk: Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation »
Yacine Jernite · Anna Choromanska · David Sontag