Timezone: »

How Important is the Train-Validation Split in Meta-Learning?
Yu Bai · Minshuo Chen · Pan Zhou · Tuo Zhao · Jason Lee · Sham Kakade · Huan Wang · Caiming Xiong

Wed Jul 21 09:00 PM -- 11:00 PM (PDT) @

Meta-learning aims to perform fast adaptation on a new task through learning a “prior” from multiple existing tasks. A common practice in meta-learning is to perform a train-validation split (\emph{train-val method}) where the prior adapts to the task on one split of the data, and the resulting predictor is evaluated on another split. Despite its prevalence, the importance of the train-validation split is not well understood either in theory or in practice, particularly in comparison to the more direct \emph{train-train method}, which uses all the per-task data for both training and evaluation.

We provide a detailed theoretical study on whether and when the train-validation split is helpful in the linear centroid meta-learning problem. In the agnostic case, we show that the expected loss of the train-val method is minimized at the optimal prior for meta testing, and this is not the case for the train-train method in general without structural assumptions on the data. In contrast, in the realizable case where the data are generated from linear models, we show that both the train-val and train-train losses are minimized at the optimal prior in expectation. Further, perhaps surprisingly, our main result shows that the train-train method achieves a \emph{strictly better} excess loss in this realizable case, even when the regularization parameter and split ratio are optimally tuned for both methods. Our results highlight that sample splitting may not always be preferable, especially when the data is realizable by the model. We validate our theories by experimentally showing that the train-train method can indeed outperform the train-val method, on both simulations and real meta-learning tasks.

Author Information

Yu Bai (Salesforce Research)
Minshuo Chen (Georgia Tech)
Pan Zhou (Salesforce)
Tuo Zhao (Georgia Tech)
Jason Lee (Princeton)
Sham Kakade (University of Washington)

Sham Kakade is a Gordon McKay Professor of Computer Science and Statistics at Harvard University and a co-director of the recently announced Kempner Institute. He works on the mathematical foundations of machine learning and AI. Sham's thesis helped in laying the statistical foundations of reinforcement learning. With his collaborators, his additional contributions include: one of the first provably efficient policy search methods, Conservative Policy Iteration, for reinforcement learning; developing the mathematical foundations for the widely used linear bandit models and the Gaussian process bandit models; the tensor and spectral methodologies for provable estimation of latent variable models; the first sharp analysis of the perturbed gradient descent algorithm, along with the design and analysis of numerous other convex and non-convex algorithms. He is the recipient of the ICML Test of Time Award (2020), the IBM Pat Goldberg best paper award (in 2007), INFORMS Revenue Management and Pricing Prize (2014). He has been program chair for COLT 2011. Sham was an undergraduate at Caltech, where he studied physics and worked under the guidance of John Preskill in quantum computing. He then completed his Ph.D. in computational neuroscience at the Gatsby Unit at University College London, under the supervision of Peter Dayan. He was a postdoc at the Dept. of Computer Science, University of Pennsylvania , where he broadened his studies to include computational game theory and economics from the guidance of Michael Kearns. Sham has been a Principal Research Scientist at Microsoft Research, New England, an associate professor at the Department of Statistics, Wharton, UPenn, and an assistant professor at the Toyota Technological Institute at Chicago.

Huan Wang (Salesforce Research)
Caiming Xiong (Salesforce)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors