Timezone: »
Poster
Safe Reinforcement Learning with Linear Function Approximation
Sanae Amani · Christos Thrampoulidis · Lin Yang
Safety in reinforcement learning has become increasingly important in recent years. Yet, existing solutions either fail to strictly avoid choosing unsafe actions, which may lead to catastrophic results in safety-critical systems, or fail to provide regret guarantees for settings where safety constraints need to be learned. In this paper, we address both problems by first modeling safety as an unknown linear cost function of states and actions, which must always fall below a certain threshold. We then present algorithms, termed SLUCB-QVI and RSLUCB-QVI, for episodic Markov decision processes (MDPs) with linear function approximation. We show that SLUCB-QVI and RSLUCB-QVI, while with \emph{no safety violation}, achieve a $\tilde{\mathcal{O}}\left(\kappa\sqrt{d^3H^3T}\right)$ regret, nearly matching that of state-of-the-art unsafe algorithms, where $H$ is the duration of each episode, $d$ is the dimension of the feature mapping, $\kappa$ is a constant characterizing the safety constraints, and $T$ is the total number of action plays. We further present numerical simulations that corroborate our theoretical findings.
Author Information
Sanae Amani (University of California, Los Angeles)
Christos Thrampoulidis (University of British Columbia)
Lin Yang (UCLA)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Safe Reinforcement Learning with Linear Function Approximation »
Wed. Jul 21st 12:20 -- 12:25 AM Room
More from the Same Authors
-
2021 : Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation »
Ke Wang · Vidya Muthukumar · Christos Thrampoulidis -
2021 : Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization »
Ke Wang · Christos Thrampoulidis -
2021 : Label-Imbalanced and Group-Sensitive Classification under Overparameterization »
Ganesh Ramachandra Kini · Orestis Paraskevas · Samet Oymak · Christos Thrampoulidis -
2021 : Gap-Dependent Unsupervised Exploration for Reinforcement Learning »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2021 : Online Sub-Sampling for Reinforcement Learning with General Function Approximation »
Dingwen Kong · Ruslan Salakhutdinov · Ruosong Wang · Lin Yang -
2021 : Solving Multi-Arm Bandit Using a Few Bits of Communication »
Osama Hanna · Lin Yang · Christina Fragouli -
2022 : Provably Correct SGD-based Exploration for Linear Bandit »
Jialin Dong · Lin Yang -
2022 : Provably Feedback-Efficient Reinforcement Learning via Active Reward Learning »
Dingwen Kong · Lin Yang -
2023 : Generalization and Stability of Interpolating Neural Networks with Minimal Width »
Hossein Taheri · Christos Thrampoulidis -
2023 : Supervised-Contrastive Loss Learns Orthogonal Frames and Batching Matters »
Ganesh Ramachandra Kini · Vala Vakilian · Tina Behnia · Jaidev Gill · Christos Thrampoulidis -
2023 : Fast Test Error Rates for Gradient-based Algorithms on Separable Data »
Puneesh Deora · Bhavya Vasudeva · Vatsal Sharan · Christos Thrampoulidis -
2023 : On the Training and Generalization Dynamics of Multi-head Attention »
Puneesh Deora · Rouzbeh Ghaderi · Hossein Taheri · Christos Thrampoulidis -
2023 Poster: On the Role of Attention in Prompt-tuning »
Samet Oymak · Ankit Singh Rawat · Mahdi Soltanolkotabi · Christos Thrampoulidis -
2023 Poster: Does Sparsity Help in Learning Misspecified Linear Bandits? »
Jialin Dong · Lin Yang -
2023 Poster: Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost »
Sanae Amani · Tor Lattimore · Andras Gyorgy · Lin Yang -
2023 Poster: Horizon-free Learning for Markov Decision Processes and Games: Stochastically Bounded Rewards and Improved Bounds »
Shengshi Li · Lin Yang -
2023 Poster: Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling »
Yunfan Li · Yiran Wang · Yu Cheng · Lin Yang -
2022 Poster: On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning »
Weichao Mao · Lin Yang · Kaiqing Zhang · Tamer Basar -
2022 Spotlight: On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning »
Weichao Mao · Lin Yang · Kaiqing Zhang · Tamer Basar -
2022 Poster: FedNest: Federated Bilevel, Minimax, and Compositional Optimization »
Davoud Ataee Tarzanagh · Mingchen Li · Christos Thrampoulidis · Samet Oymak -
2022 Oral: FedNest: Federated Bilevel, Minimax, and Compositional Optimization »
Davoud Ataee Tarzanagh · Mingchen Li · Christos Thrampoulidis · Samet Oymak -
2021 : Solving Multi-Arm Bandit Using a Few Bits of Communication »
Osama Hanna · Lin Yang · Christina Fragouli -
2021 Workshop: Workshop on Reinforcement Learning Theory »
Shipra Agrawal · Simon Du · Niao He · Csaba Szepesvari · Lin Yang -
2021 Poster: Provably Correct Optimization and Exploration with Non-linear Policies »
Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang -
2021 Poster: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Spotlight: Provably Correct Optimization and Exploration with Non-linear Policies »
Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang -
2021 Spotlight: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2020 Poster: Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound »
Lin Yang · Mengdi Wang -
2020 Poster: Model-Based Reinforcement Learning with Value-Targeted Regression »
Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang -
2020 Poster: Nearly Linear Row Sampling Algorithm for Quantile Regression »
Yi Li · Ruosong Wang · Lin Yang · Hanrui Zhang -
2020 Poster: Obtaining Adjustable Regularization for Free via Iterate Averaging »
Jingfeng Wu · Vladimir Braverman · Lin Yang