Timezone: »
Neural architecture search (NAS) automates the design of deep neural networks. One of the main challenges in searching complex and non-continuous architectures is to compare the similarity of networks that the conventional Euclidean metric may fail to capture. Optimal transport (OT) is resilient to such complex structure by considering the minimal cost for transporting a network into another. However, the OT is generally not negative definite which may limit its ability to build the positive-definite kernels required in many kernel-dependent frameworks. Building upon tree-Wasserstein (TW), which is a negative definite variant of OT, we develop a novel discrepancy for neural architectures, and demonstrate it within a Gaussian process surrogate model for the sequential NAS settings. Furthermore, we derive a novel parallel NAS, using quality k-determinantal point process on the GP posterior, to select diverse and high-performing architectures from a discrete set of candidates. Empirically, we demonstrate that our TW-based approaches outperform other baselines in both sequential and parallel NAS.
Author Information
Vu Nguyen (Amazon Adelaide)
Tam Le (RIKEN AIP)
My name is Tam Le. I have been an assistant professor at The Institute of Statistical Mathematics (ISM), Japan since 09/2022. I am also a visiting scientist at RIKEN AIP, Japan since 12/2022. I officially received my PhD degree from Kyoto University in 01/2016, under the supervision of Professor Marco Cuturi and Professor Akihiro Yamamoto. Before ISM, I worked at RIKEN AIP as a postdoc (09/2017 - 07/2021), and as a research scientist (08/2021 - 08/2022), working with Professor Makoto Yamada. Before those, I spent 1.5 year as a postdoc at Nagoya Institute of Technology and National Institute of Materials Science (02/2016 - 08/2017), working with Professor Ichiro Takeuchi.
Makoto Yamada (RIKEN)
Michael A Osborne (U Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search »
Wed. Jul 21st 04:00 -- 06:00 AM Room
More from the Same Authors
-
2021 : Attacking Graph Classification via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Binxin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2021 : Revisiting Design Choices in Offline Model Based Reinforcement Learning »
Cong Lu · Philip Ball · Jack Parker-Holder · Michael A Osborne · Stephen Roberts -
2022 : Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations »
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh -
2023 : SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature over Discrete and Mixed Spaces »
Masaki Adachi · Satoshi Hayakawa · Saad Hamid · Martin Jørgensen · Harald Oberhauser · Michael A Osborne -
2022 Poster: Robust Multi-Objective Bayesian Optimization Under Input Noise »
Samuel Daulton · Sait Cakmak · Maximilian Balandat · Michael A Osborne · Enlu Zhou · Eytan Bakshy -
2022 Spotlight: Robust Multi-Objective Bayesian Optimization Under Input Noise »
Samuel Daulton · Sait Cakmak · Maximilian Balandat · Michael A Osborne · Enlu Zhou · Eytan Bakshy -
2021 Workshop: Challenges in Deploying and monitoring Machine Learning Systems »
Alessandra Tosi · Nathan Korda · Michael A Osborne · Stephen Roberts · Andrei Paleyes · Fariba Yousefi -
2021 Poster: Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces »
Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne -
2021 Spotlight: Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces »
Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne -
2020 : 1.9 Bayesian optimization for Iterative Learning »
Vu Nguyen -
2020 : Contributed Talk 1: Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits »
Jack Parker-Holder · Vu Nguyen · Stephen Roberts -
2020 Poster: Knowing The What But Not The Where in Bayesian Optimization »
Vu Nguyen · Michael A Osborne -
2020 Poster: Bayesian Optimisation over Multiple Continuous and Categorical Inputs »
Binxin Ru · Ahsan Alvi · Vu Nguyen · Michael A Osborne · Stephen Roberts -
2019 Poster: On the Limitations of Representing Functions on Sets »
Edward Wagstaff · Fabian Fuchs · Martin Engelcke · Ingmar Posner · Michael A Osborne -
2019 Oral: On the Limitations of Representing Functions on Sets »
Edward Wagstaff · Fabian Fuchs · Martin Engelcke · Ingmar Posner · Michael A Osborne -
2019 Poster: Automated Model Selection with Bayesian Quadrature »
Henry Chai · Jean-Francois Ton · Michael A Osborne · Roman Garnett -
2019 Poster: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Poster: Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation »
Ahsan Alvi · Binxin Ru · Jan-Peter Calliess · Stephen Roberts · Michael A Osborne -
2019 Oral: Automated Model Selection with Bayesian Quadrature »
Henry Chai · Jean-Francois Ton · Michael A Osborne · Roman Garnett -
2019 Oral: AReS and MaRS - Adversarial and MMD-Minimizing Regression for SDEs »
Gabriele Abbati · Philippe Wenk · Michael A Osborne · Andreas Krause · Bernhard Schölkopf · Stefan Bauer -
2019 Oral: Asynchronous Batch Bayesian Optimisation with Improved Local Penalisation »
Ahsan Alvi · Binxin Ru · Jan-Peter Calliess · Stephen Roberts · Michael A Osborne -
2019 Poster: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2019 Poster: Safe Grid Search with Optimal Complexity »
Eugene Ndiaye · Tam Le · Olivier Fercoq · Joseph Salmon · Ichiro Takeuchi -
2019 Oral: Fingerprint Policy Optimisation for Robust Reinforcement Learning »
Supratik Paul · Michael A Osborne · Shimon Whiteson -
2019 Oral: Safe Grid Search with Optimal Complexity »
Eugene Ndiaye · Tam Le · Olivier Fercoq · Joseph Salmon · Ichiro Takeuchi -
2018 Poster: Fast Information-theoretic Bayesian Optimisation »
Binxin Ru · Michael A Osborne · Mark Mcleod · Diego Granziol -
2018 Poster: Optimization, fast and slow: optimally switching between local and Bayesian optimization »
Mark McLeod · Stephen Roberts · Michael A Osborne -
2018 Oral: Optimization, fast and slow: optimally switching between local and Bayesian optimization »
Mark McLeod · Stephen Roberts · Michael A Osborne -
2018 Oral: Fast Information-theoretic Bayesian Optimisation »
Binxin Ru · Michael A Osborne · Mark Mcleod · Diego Granziol