Timezone: »
We consider training models on private data that are distributed across user devices. To ensure privacy, we add on-device noise and use secure aggregation so that only the noisy sum is revealed to the server. We present a comprehensive end-to-end system, which appropriately discretizes the data and adds discrete Gaussian noise before performing secure aggregation. We provide a novel privacy analysis for sums of discrete Gaussians and carefully analyze the effects of data quantization and modular summation arithmetic. Our theoretical guarantees highlight the complex tension between communication, privacy, and accuracy. Our extensive experimental results demonstrate that our solution is essentially able to match the accuracy to central differential privacy with less than 16 bits of precision per value.
Author Information
Peter Kairouz (Google)
Ziyu Liu (Google Research)
Thomas Steinke (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Fri. Jul 23rd 04:00 -- 06:00 AM Room
More from the Same Authors
-
2021 : Neural Network-based Estimation of the MMSE »
Mario Diaz · Peter Kairouz · Lalitha Sankar -
2021 : The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 : On the Renyi Differential Privacy of the Shuffle Model »
Antonious Girgis · Deepesh Data · Suhas Diggavi · Ananda Theertha Suresh · Peter Kairouz -
2021 : Practical and Private (Deep) Learning without Sampling orShuffling »
Peter Kairouz · Hugh B McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 : Industrial Booth (Google) »
Zheng Xu · Peter Kairouz -
2022 : Fair Universal Representations using Adversarial Models »
Monica Welfert · Peter Kairouz · Jiachun Liao · Chong Huang · Lalitha Sankar -
2023 : Unleashing the Power of Randomization in Auditing Differentially Private ML »
Krishna Pillutla · Galen Andrew · Peter Kairouz · Hugh B McMahan · Alina Oprea · Sewoong Oh -
2023 : Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation »
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz -
2023 : Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 : Panel Discussion »
Peter Kairouz · Song Han · Kamalika Chaudhuri · Florian Tramer -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 Poster: Private Federated Learning with Autotuned Compression »
Enayat Ullah · Christopher Choquette-Choo · Peter Kairouz · Sewoong Oh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Oral: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Poster: Public Data-Assisted Mirror Descent for Private Model Training »
Ehsan Amid · Arun Ganesh · Rajiv Mathews · Swaroop Ramaswamy · Shuang Song · Thomas Steinke · Thomas Steinke · Vinith Suriyakumar · Om Thakkar · Abhradeep Guha Thakurta -
2022 Spotlight: Public Data-Assisted Mirror Descent for Private Model Training »
Ehsan Amid · Arun Ganesh · Rajiv Mathews · Swaroop Ramaswamy · Shuang Song · Thomas Steinke · Thomas Steinke · Vinith Suriyakumar · Om Thakkar · Abhradeep Guha Thakurta -
2021 : Industrial Panel »
Nathalie Baracaldo · Shiqiang Wang · Peter Kairouz · Zheng Xu · Kshitiz Malik · Tao Zhang -
2021 : Contributed Talks Session 1 »
Marika Swanberg · Samuel Haney · Peter Kairouz -
2021 Poster: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Spotlight: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun