Timezone: »
Credit assignment in reinforcement learning is the problem of measuring an action’s influence on future rewards. In particular, this requires separating skill from luck, i.e. disentangling the effect of an action on rewards from that of external factors and subsequent actions. To achieve this, we adapt the notion of counterfactuals from causality theory to a model-free RL setup. The key idea is to condition value functions on future events, by learning to extract relevant information from a trajectory. We formulate a family of policy gradient algorithms that use these future-conditional value functions as baselines or critics, and show that they are provably low variance. To avoid the potential bias from conditioning on future information, we constrain the hindsight information to not contain information about the agent's actions. We demonstrate the efficacy and validity of our algorithm on a number of illustrative and challenging problems.
Author Information
Thomas Mesnard (DeepMind)
Theophane Weber (DeepMind)
Fabio Viola (DeepMind)
Shantanu Thakoor (DeepMind)
Alaa Saade (DeepMind)
Anna Harutyunyan (DeepMind)
Will Dabney (DeepMind)
Thomas Stepleton (DeepMind)
Nicolas Heess (DeepMind)
Arthur Guez (Google DeepMind)
Eric Moulines (Ecole Polytechnique)
Marcus Hutter (DeepMind)
Lars Buesing (Deepmind)
Remi Munos (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Tue. Jul 20th 02:40 -- 02:45 PM Room
More from the Same Authors
-
2021 : Marginalized Operators for Off-Policy Reinforcement Learning »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 : Model-Free Approach to Evaluate Reinforcement Learning Algorithms »
Denis Belomestny · Ilya Levin · Eric Moulines · Alexey Naumov · Sergey Samsonov · Veronika Zorina -
2021 : Density-Based Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforcement Learning »
Omar Darwiche Domingues · Corentin Tallec · Remi Munos · Michal Valko -
2022 : Learning to induce causal structure »
Rosemary Nan Ke · Silvia Chiappa · Jane Wang · Jorg Bornschein · Anirudh Goyal · Melanie Rey · Matthew Botvinick · Theophane Weber · Michael Mozer · Danilo J. Rezende -
2022 : Pushing the limits of self-supervised ResNets: Can we outperform supervised learning without labels on ImageNet? »
Nenad Tomasev · Ioana Bica · Brian McWilliams · Lars Buesing · Razvan Pascanu · Charles Blundell · Jovana Mitrovic -
2022 : Improved Generalization Bounds for Transfer Learning via Neural Collapse »
Tomer Galanti · Andras Gyorgy · Marcus Hutter -
2023 : Balanced Training of Energy-Based Models with Adaptive Flow Sampling »
Louis Grenioux · Eric Moulines · Marylou Gabrié -
2023 Poster: Understanding Self-Predictive Learning for Reinforcement Learning »
Yunhao Tang · Zhaohan Guo · Pierre Richemond · Bernardo Avila Pires · Yash Chandak · Remi Munos · Mark Rowland · Mohammad Gheshlaghi Azar · Charline Le Lan · Clare Lyle · Andras Gyorgy · Shantanu Thakoor · Will Dabney · Bilal Piot · Daniele Calandriello · Michal Valko -
2023 Poster: Half-Hop: A graph upsampling approach for slowing down message passing »
Mehdi Azabou · Venkataramana Ganesh · Shantanu Thakoor · Chi-Heng Lin · Lakshmi Sathidevi · Ran Liu · Michal Valko · Petar Veličković · Eva Dyer -
2023 Poster: Curiosity in Hindsight: Intrinsic Exploration in Stochastic Environments »
Daniel Jarrett · Corentin Tallec · Florent Altché · Thomas Mesnard · Remi Munos · Michal Valko -
2023 Poster: Representations and Exploration for Deep Reinforcement Learning using Singular Value Decomposition »
Yash Chandak · Shantanu Thakoor · Zhaohan Guo · Yunhao Tang · Remi Munos · Will Dabney · Diana Borsa -
2023 Poster: Towards a better understanding of representation dynamics under TD-learning »
Yunhao Tang · Remi Munos -
2023 Oral: Understanding Plasticity in Neural Networks »
Clare Lyle · Zeyu Zheng · Evgenii Nikishin · Bernardo Avila Pires · Razvan Pascanu · Will Dabney -
2023 Oral: Adapting to game trees in zero-sum imperfect information games »
Côme Fiegel · Pierre Menard · Tadashi Kozuno · Remi Munos · Vianney Perchet · Michal Valko -
2023 Poster: Understanding Plasticity in Neural Networks »
Clare Lyle · Zeyu Zheng · Evgenii Nikishin · Bernardo Avila Pires · Razvan Pascanu · Will Dabney -
2023 Poster: Bootstrapped Representations in Reinforcement Learning »
Charline Le Lan · Stephen Tu · Mark Rowland · Anna Harutyunyan · Rishabh Agarwal · Marc Bellemare · Will Dabney -
2023 Poster: Memory-Based Meta-Learning on Non-Stationary Distributions »
Tim Genewein · Gregoire Deletang · Anian Ruoss · Li Kevin Wenliang · Elliot Catt · Vincent Dutordoir · Jordi Grau-Moya · Laurent Orseau · Marcus Hutter · Joel Veness -
2023 Poster: Conformal Prediction for Federated Uncertainty Quantification Under Label Shift »
Vincent Plassier · Mehdi Makni · Aleksandr Rubashevskii · Eric Moulines · Maxim Panov -
2023 Poster: Adapting to game trees in zero-sum imperfect information games »
Côme Fiegel · Pierre Menard · Tadashi Kozuno · Remi Munos · Vianney Perchet · Michal Valko -
2023 Poster: Atari-5: Distilling the Arcade Learning Environment down to Five Games »
Matthew Aitchison · Penny Sweetser · Marcus Hutter -
2023 Poster: Fast Rates for Maximum Entropy Exploration »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Yunhao Tang · Michal Valko · Pierre Menard -
2023 Poster: On Sampling with Approximate Transport Maps »
Louis Grenioux · Alain Oliviero Durmus · Eric Moulines · Marylou Gabrié -
2023 Oral: Settling the Reward Hypothesis »
Michael Bowling · John Martin · David Abel · Will Dabney -
2023 Oral: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation »
Mark Rowland · Yunhao Tang · Clare Lyle · Remi Munos · Marc Bellemare · Will Dabney -
2023 Poster: Investigating the Role of Model-Based Learning in Exploration and Transfer »
Jacob C Walker · Eszter Vértes · Yazhe Li · Gabriel Dulac-Arnold · Ankesh Anand · Theophane Weber · Jessica Hamrick -
2023 Poster: Quantile Credit Assignment »
Thomas Mesnard · Wenqi Chen · Alaa Saade · Yunhao Tang · Mark Rowland · Theophane Weber · Clare Lyle · Audrunas Gruslys · Michal Valko · Will Dabney · Georg Ostrovski · Eric Moulines · Remi Munos -
2023 Poster: Settling the Reward Hypothesis »
Michael Bowling · John Martin · David Abel · Will Dabney -
2023 Poster: DoMo-AC: Doubly Multi-step Off-policy Actor-Critic Algorithm »
Yunhao Tang · Tadashi Kozuno · Mark Rowland · Anna Harutyunyan · Remi Munos · Bernardo Avila Pires · Michal Valko -
2023 Poster: State and parameter learning with PARIS particle Gibbs »
Gabriel Cardoso · Yazid Janati el idrissi · Sylvain Le Corff · Eric Moulines · Jimmy Olsson -
2023 Poster: VA-learning as a more efficient alternative to Q-learning »
Yunhao Tang · Remi Munos · Mark Rowland · Michal Valko -
2023 Poster: Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice »
Toshinori Kitamura · Tadashi Kozuno · Yunhao Tang · Nino Vieillard · Michal Valko · Wenhao Yang · Jincheng Mei · Pierre Menard · Mohammad Gheshlaghi Azar · Remi Munos · Olivier Pietquin · Matthieu Geist · Csaba Szepesvari · Wataru Kumagai · Yutaka Matsuo -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2022 Spotlight: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre Menard -
2022 Oral: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2022 Poster: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2022 Poster: Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games »
Siqi Liu · Marc Lanctot · Luke Marris · Nicolas Heess -
2022 Spotlight: Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games »
Siqi Liu · Marc Lanctot · Luke Marris · Nicolas Heess -
2022 Spotlight: Diffusion bridges vector quantized variational autoencoders »
Max Cohen · Guillaume QUISPE · Sylvain Le Corff · Charles Ollion · Eric Moulines -
2021 Poster: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Spotlight: Monte Carlo Variational Auto-Encoders »
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov -
2021 Poster: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Oral: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs »
Vincent Plassier · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Poster: Data-efficient Hindsight Off-policy Option Learning »
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller -
2021 Spotlight: Data-efficient Hindsight Off-policy Option Learning »
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller -
2021 Poster: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Poster: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Poster: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Spotlight: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Poster: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2021 Spotlight: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2020 : QA for invited talk 6 Heess »
Nicolas Heess -
2020 : Invited talk 6 Heess »
Nicolas Heess -
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Monte-Carlo Tree Search as Regularized Policy Optimization »
Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos -
2020 Poster: CoMic: Complementary Task Learning & Mimicry for Reusable Skills »
Leonard Hasenclever · Fabio Pardo · Raia Hadsell · Nicolas Heess · Josh Merel -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Fast computation of Nash Equilibria in Imperfect Information Games »
Remi Munos · Julien Perolat · Jean-Baptiste Lespiau · Mark Rowland · Bart De Vylder · Marc Lanctot · Finbarr Timbers · Daniel Hennes · Shayegan Omidshafiei · Audrunas Gruslys · Mohammad Gheshlaghi Azar · Edward Lockhart · Karl Tuyls -
2020 Poster: Fast and Consistent Learning of Hidden Markov Models by Incorporating Non-Consecutive Correlations »
Robert Mattila · Cristian R. Rojas · Eric Moulines · Vikram Krishnamurthy · Bo Wahlberg -
2020 Poster: Stabilizing Transformers for Reinforcement Learning »
Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell -
2020 Poster: A distributional view on multi-objective policy optimization »
Abbas Abdolmaleki · Sandy Huang · Leonard Hasenclever · Michael Neunert · Francis Song · Martina Zambelli · Murilo Martins · Nicolas Heess · Raia Hadsell · Martin Riedmiller -
2020 Poster: Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning »
Zhaohan Guo · Bernardo Avila Pires · Bilal Piot · Jean-Bastien Grill · Florent Altché · Remi Munos · Mohammad Gheshlaghi Azar -
2020 Poster: Taylor Expansion Policy Optimization »
Yunhao Tang · Michal Valko · Remi Munos -
2019 : Nicolas Heess: TBD »
Nicolas Heess -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Poster: Composing Entropic Policies using Divergence Correction »
Jonathan Hunt · Andre Barreto · Timothy Lillicrap · Nicolas Heess -
2019 Poster: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Poster: Per-Decision Option Discounting »
Anna Harutyunyan · Peter Vrancx · Philippe Hamel · Ann Nowe · Doina Precup -
2019 Oral: Per-Decision Option Discounting »
Anna Harutyunyan · Peter Vrancx · Philippe Hamel · Ann Nowe · Doina Precup -
2019 Oral: An Investigation of Model-Free Planning »
Arthur Guez · Mehdi Mirza · Karol Gregor · Rishabh Kabra · Sebastien Racaniere · Theophane Weber · David Raposo · Adam Santoro · Laurent Orseau · Tom Eccles · Greg Wayne · David Silver · Timothy Lillicrap -
2019 Oral: Composing Entropic Policies using Divergence Correction »
Jonathan Hunt · Andre Barreto · Timothy Lillicrap · Nicolas Heess -
2018 Poster: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Poster: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Oral: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Learning by Playing - Solving Sparse Reward Tasks from Scratch »
Martin Riedmiller · Roland Hafner · Thomas Lampe · Michael Neunert · Jonas Degrave · Tom Van de Wiele · Vlad Mnih · Nicolas Heess · Jost Springenberg -
2018 Poster: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Oral: Learning by Playing - Solving Sparse Reward Tasks from Scratch »
Martin Riedmiller · Roland Hafner · Thomas Lampe · Michael Neunert · Jonas Degrave · Tom Van de Wiele · Vlad Mnih · Nicolas Heess · Jost Springenberg -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Oral: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia -
2018 Oral: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Poster: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Poster: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Talk: The Predictron: End-To-End Learning and Planning »
David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley · Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Poster: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos