Timezone: »
We propose a novel algorithm for online meta learning where task instances are sequentially revealed with limited supervision and a learner is expected to meta learn them in each round, so as to allow the learner to customize a task-specific model rapidly with little task-level supervision. A fundamental concern arising in online meta-learning is the scalability of memory as more tasks are viewed over time. Heretofore, prior works have allowed for perfect recall leading to linear increase in memory with time. Different from prior works, in our method, prior task instances are allowed to be deleted. We propose to leverage prior task instances by means of a fixed-size state-vector, which is updated sequentially. Our theoretical analysis demonstrates that our proposed memory efficient online learning (MOML) method suffers sub-linear regret with convex loss functions and sub-linear local regret for nonconvex losses. On benchmark datasets we show that our method can outperform prior works even though they allow for perfect recall.
Author Information
Durmus Alp Emre Acar (Boston University)
Ruizhao Zhu (Boston University)
Venkatesh Saligrama (Boston University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Memory Efficient Online Meta Learning »
Thu. Jul 22nd 12:40 -- 12:45 PM Room
More from the Same Authors
-
2022 : Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 : ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 : Acting Optimistically in Choosing Safe Actions »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 : ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 : Achieving High TinyML Accuracy through Selective Cloud Interactions »
Anil Kag · Igor Fedorov · Aditya Gangrade · Paul Whatmough · Venkatesh Saligrama -
2022 : FedHeN: Federated Learning in Heterogeneous Networks »
Durmus Alp Emre Acar · Venkatesh Saligrama -
2022 Poster: Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 Spotlight: Strategies for Safe Multi-Armed Bandits with Logarithmic Regret and Risk »
Tianrui Chen · Aditya Gangrade · Venkatesh Saligrama -
2022 Poster: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2022 Poster: ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 Spotlight: ActiveHedge: Hedge meets Active Learning »
Bhuvesh Kumar · Jacob Abernethy · Venkatesh Saligrama -
2022 Spotlight: Faster Algorithms for Learning Convex Functions »
Ali Siahkamari · Durmus Alp Emre Acar · Christopher Liao · Kelly Geyer · Venkatesh Saligrama · Brian Kulis -
2021 Poster: Debiasing Model Updates for Improving Personalized Federated Training »
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama -
2021 Spotlight: Debiasing Model Updates for Improving Personalized Federated Training »
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama -
2021 Poster: Training Recurrent Neural Networks via Forward Propagation Through Time »
Anil Kag · Venkatesh Saligrama -
2021 Spotlight: Training Recurrent Neural Networks via Forward Propagation Through Time »
Anil Kag · Venkatesh Saligrama -
2020 Poster: Piecewise Linear Regression via a Difference of Convex Functions »
Ali Siahkamari · Aditya Gangrade · Brian Kulis · Venkatesh Saligrama -
2020 Poster: Minimax Rate for Learning From Pairwise Comparisons in the BTL Model »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Poster: Graph Resistance and Learning from Pairwise Comparisons »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Oral: Graph Resistance and Learning from Pairwise Comparisons »
Julien Hendrickx · Alex Olshevsky · Venkatesh Saligrama -
2019 Poster: Learning Classifiers for Target Domain with Limited or No Labels »
Pengkai Zhu · Hanxiao Wang · Venkatesh Saligrama -
2019 Oral: Learning Classifiers for Target Domain with Limited or No Labels »
Pengkai Zhu · Hanxiao Wang · Venkatesh Saligrama -
2018 Poster: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2018 Oral: Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers »
Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama -
2017 Workshop: ML on a budget: IoT, Mobile and other tiny-ML applications »
Manik Varma · Venkatesh Saligrama · Prateek Jain -
2017 Poster: Adaptive Neural Networks for Efficient Inference »
Tolga Bolukbasi · Joseph Wang · Ofer Dekel · Venkatesh Saligrama -
2017 Talk: Adaptive Neural Networks for Efficient Inference »
Tolga Bolukbasi · Joseph Wang · Ofer Dekel · Venkatesh Saligrama -
2017 Poster: Connected Subgraph Detection with Mirror Descent on SDPs »
Cem Aksoylar · Orecchia Lorenzo · Venkatesh Saligrama -
2017 Talk: Connected Subgraph Detection with Mirror Descent on SDPs »
Cem Aksoylar · Orecchia Lorenzo · Venkatesh Saligrama