Timezone: »
Author Information
Marc Finzi (New York University)
Max Welling (University of Amsterdam)
Prof. Dr. Max Welling is a research chair in Machine Learning at the University of Amsterdam and a VP Technologies at Qualcomm. He has a secondary appointment as a senior fellow at the Canadian Institute for Advanced Research (CIFAR). He is co-founder of “Scyfer BV” a university spin-off in deep learning which got acquired by Qualcomm in summer 2017. In the past he held postdoctoral positions at Caltech (’98-’00), UCL (’00-’01) and the U. Toronto (’01-’03). He received his PhD in ’98 under supervision of Nobel laureate Prof. G. 't Hooft. Max Welling has served as associate editor in chief of IEEE TPAMI from 2011-2015 (impact factor 4.8). He serves on the board of the NIPS foundation since 2015 (the largest conference in machine learning) and has been program chair and general chair of NIPS in 2013 and 2014 respectively. He was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of MIDL 2018. He has served on the editorial boards of JMLR and JML and was an associate editor for Neurocomputing, JCGS and TPAMI. He received multiple grants from Google, Facebook, Yahoo, NSF, NIH, NWO and ONR-MURI among which an NSF career grant in 2005. He is recipient of the ECCV Koenderink Prize in 2010. Welling is in the board of the Data Science Research Center in Amsterdam, he directs the Amsterdam Machine Learning Lab (AMLAB), and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the Bosch-UvA Deep Learning lab (DELTA). Max Welling has over 200 scientific publications in machine learning, computer vision, statistics and physics.
Andrew Wilson (New York University)

Andrew Gordon Wilson is faculty in the Courant Institute and Center for Data Science at NYU. His interests include probabilistic modelling, Gaussian processes, Bayesian statistics, physics inspired machine learning, and loss surfaces and generalization in deep learning. His webpage is https://cims.nyu.edu/~andrewgw.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups »
Wed. Jul 21st 04:00 -- 06:00 AM Room
More from the Same Authors
-
2022 : How much Data is Augmentation Worth? »
Jonas Geiping · Gowthami Somepalli · Ravid Shwartz-Ziv · Andrew Wilson · Tom Goldstein · Micah Goldblum -
2022 : Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations »
Polina Kirichenko · Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2022 : On Feature Learning in the Presence of Spurious Correlations »
Pavel Izmailov · Polina Kirichenko · Nate Gruver · Andrew Wilson -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2023 Poster: Simple and Fast Group Robustness by Automatic Feature Reweighting »
Shikai Qiu · Andres Potapczynski · Pavel Izmailov · Andrew Wilson -
2023 Poster: User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems »
Marc Finzi · Anudhyan Boral · Leonardo Zepeda-Nunez · Andrew Wilson · Fei Sha -
2023 Poster: Function-Space Regularization in Neural Networks: A Probabilistic Perspective »
Tim G. J. Rudner · Sanyam Kapoor · Shikai Qiu · Andrew Wilson -
2023 Workshop: Structured Probabilistic Inference and Generative Modeling »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2022 : Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Prior »
Ravid Shwartz-Ziv · Micah Goldblum · Hossein Souri · Sanyam Kapoor · Chen Zhu · Yann LeCun · Andrew Wilson -
2022 Poster: Lie Point Symmetry Data Augmentation for Neural PDE Solvers »
Johannes Brandstetter · Max Welling · Daniel Worrall -
2022 Poster: Bayesian Model Selection, the Marginal Likelihood, and Generalization »
Sanae Lotfi · Pavel Izmailov · Gregory Benton · Micah Goldblum · Andrew Wilson -
2022 Oral: Bayesian Model Selection, the Marginal Likelihood, and Generalization »
Sanae Lotfi · Pavel Izmailov · Gregory Benton · Micah Goldblum · Andrew Wilson -
2022 Spotlight: Lie Point Symmetry Data Augmentation for Neural PDE Solvers »
Johannes Brandstetter · Max Welling · Daniel Worrall -
2022 Spotlight: Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders »
Samuel Stanton · Wesley Maddox · Nate Gruver · Phillip Maffettone · Emily Delaney · Peyton Greenside · Andrew Wilson -
2022 Poster: Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes »
Gregory Benton · Wesley Maddox · Andrew Wilson -
2022 Poster: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2022 Poster: Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders »
Samuel Stanton · Wesley Maddox · Nate Gruver · Phillip Maffettone · Emily Delaney · Peyton Greenside · Andrew Wilson -
2022 Spotlight: Low-Precision Stochastic Gradient Langevin Dynamics »
Ruqi Zhang · Andrew Wilson · Christopher De Sa -
2022 Spotlight: Volatility Based Kernels and Moving Average Means for Accurate Forecasting with Gaussian Processes »
Gregory Benton · Wesley Maddox · Andrew Wilson -
2021 Poster: SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes »
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2021 Test Of Time: Test of Time Award »
Max Welling · Max Welling -
2021 Oral: SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes »
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson -
2021 Poster: Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition »
Shengyang Sun · Jiaxin Shi · Andrew Wilson · Roger Grosse -
2021 Spotlight: Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition »
Shengyang Sun · Jiaxin Shi · Andrew Wilson · Roger Grosse -
2021 Poster: What Are Bayesian Neural Network Posteriors Really Like? »
Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson -
2021 Poster: Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling »
Gregory Benton · Wesley Maddox · Sanae Lotfi · Andrew Wilson -
2021 Spotlight: Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling »
Gregory Benton · Wesley Maddox · Sanae Lotfi · Andrew Wilson -
2021 Oral: What Are Bayesian Neural Network Posteriors Really Like? »
Pavel Izmailov · Sharad Vikram · Matthew Hoffman · Andrew Wilson -
2020 Poster: Semi-Supervised Learning with Normalizing Flows »
Pavel Izmailov · Polina Kirichenko · Marc Finzi · Andrew Wilson -
2020 Poster: Randomly Projected Additive Gaussian Processes for Regression »
Ian Delbridge · David S Bindel · Andrew Wilson -
2020 Poster: Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data »
Marc Finzi · Samuel Stanton · Pavel Izmailov · Andrew Wilson -
2020 Tutorial: Bayesian Deep Learning and a Probabilistic Perspective of Model Construction »
Andrew Wilson -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Subspace Inference for Bayesian Deep Learning »
Polina Kirichenko · Pavel Izmailov · Andrew Wilson -
2019 Poster: Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement »
Wouter Kool · Herke van Hoof · Max Welling -
2019 Oral: Stochastic Beams and Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement »
Wouter Kool · Herke van Hoof · Max Welling -
2019 Poster: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Oral: Simple Black-box Adversarial Attacks »
Chuan Guo · Jacob Gardner · Yurong You · Andrew Wilson · Kilian Weinberger -
2019 Poster: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2019 Oral: SWALP : Stochastic Weight Averaging in Low Precision Training »
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa -
2018 Poster: Constant-Time Predictive Distributions for Gaussian Processes »
Geoff Pleiss · Jacob Gardner · Kilian Weinberger · Andrew Wilson -
2018 Oral: Constant-Time Predictive Distributions for Gaussian Processes »
Geoff Pleiss · Jacob Gardner · Kilian Weinberger · Andrew Wilson -
2018 Invited Talk: Intelligence per Kilowatthour »
Max Welling -
2018 Poster: BOCK : Bayesian Optimization with Cylindrical Kernels »
ChangYong Oh · Efstratios Gavves · Max Welling -
2018 Oral: BOCK : Bayesian Optimization with Cylindrical Kernels »
ChangYong Oh · Efstratios Gavves · Max Welling -
2017 Poster: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks »
Christos Louizos · Max Welling -
2017 Talk: Multiplicative Normalizing Flows for Variational Bayesian Neural Networks »
Christos Louizos · Max Welling