Timezone: »
Poster
Leveraged Weighted Loss for Partial Label Learning
Hongwei Wen · Jingyi Cui · Hanyuan Hang · Jiabin Liu · Yisen Wang · Zhouchen Lin
As an important branch of weakly supervised learning, partial label learning deals with data where each instance is assigned with a set of candidate labels, whereas only one of them is true. Despite many methodology studies on learning from partial labels, there still lacks theoretical understandings of their risk consistent properties under relatively weak assumptions, especially on the link between theoretical results and the empirical choice of parameters. In this paper, we propose a family of loss functions named \textit{Leveraged Weighted} (LW) loss, which for the first time introduces the leverage parameter $\beta$ to consider the trade-off between losses on partial labels and non-partial ones. From the theoretical side, we derive a generalized result of risk consistency for the LW loss in learning from partial labels, based on which we provide guidance to the choice of the leverage parameter $\beta$. In experiments, we verify the theoretical guidance, and show the high effectiveness of our proposed LW loss on both benchmark and real datasets compared with other state-of-the-art partial label learning algorithms.
Author Information
Hongwei Wen (Renmin University of China)
Jingyi Cui (Peking University)
Hanyuan Hang (University of Twente)
Jiabin Liu (AI Lab, Samsung Research China - Beijing)
Yisen Wang (Peking University)
Zhouchen Lin (Peking University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Leveraged Weighted Loss for Partial Label Learning »
Fri. Jul 23rd 12:00 -- 12:20 AM Room
More from the Same Authors
-
2021 : Adversarial Interaction Attacks: Fooling AI to Misinterpret Human Intentions »
Nodens Koren · Xingjun Ma · Qiuhong Ke · Yisen Wang · James Bailey -
2021 : Demystifying Adversarial Training via A Unified Probabilistic Framework »
Yisen Wang · Jiansheng Yang · Zhouchen Lin · Yifei Wang -
2023 Poster: On the Generalization of Multi-modal Contrastive Learning »
Qi Zhang · Yifei Wang · Yisen Wang -
2023 Poster: Rethinking Weak Supervision in Helping Contrastive Learning »
Jingyi Cui · Weiran Huang · Yifei Wang · Yisen Wang -
2022 Poster: PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs »
Zhengyang Shen · Tao Hong · Qi She · Jinwen Ma · Zhouchen Lin -
2022 Spotlight: PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs »
Zhengyang Shen · Tao Hong · Qi She · Jinwen Ma · Zhouchen Lin -
2022 Poster: Random Forest Density Estimation »
Hongwei Wen · Hanyuan Hang -
2022 Poster: Certified Adversarial Robustness Under the Bounded Support Set »
Yiwen Kou · Qinyuan Zheng · Yisen Wang -
2022 Poster: Kill a Bird with Two Stones: Closing the Convergence Gaps in Non-Strongly Convex Optimization by Directly Accelerated SVRG with Double Compensation and Snapshots »
Yuanyuan Liu · Fanhua Shang · Weixin An · Hongying Liu · Zhouchen Lin -
2022 Spotlight: Random Forest Density Estimation »
Hongwei Wen · Hanyuan Hang -
2022 Spotlight: Certified Adversarial Robustness Under the Bounded Support Set »
Yiwen Kou · Qinyuan Zheng · Yisen Wang -
2022 Spotlight: Kill a Bird with Two Stones: Closing the Convergence Gaps in Non-Strongly Convex Optimization by Directly Accelerated SVRG with Double Compensation and Snapshots »
Yuanyuan Liu · Fanhua Shang · Weixin An · Hongying Liu · Zhouchen Lin -
2022 Poster: Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(\epsilon^{-7/4})$ Complexity »
Huan Li · Zhouchen Lin -
2022 Poster: CerDEQ: Certifiable Deep Equilibrium Model »
Mingjie Li · Yisen Wang · Zhouchen Lin -
2022 Poster: G$^2$CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters »
Mingjie Li · Xiaojun Guo · Yifei Wang · Yisen Wang · Zhouchen Lin -
2022 Poster: Optimization-Induced Graph Implicit Nonlinear Diffusion »
Qi Chen · Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2022 Spotlight: Restarted Nonconvex Accelerated Gradient Descent: No More Polylogarithmic Factor in the $O(\epsilon^{-7/4})$ Complexity »
Huan Li · Zhouchen Lin -
2022 Spotlight: CerDEQ: Certifiable Deep Equilibrium Model »
Mingjie Li · Yisen Wang · Zhouchen Lin -
2022 Spotlight: Optimization-Induced Graph Implicit Nonlinear Diffusion »
Qi Chen · Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2022 Spotlight: G$^2$CN: Graph Gaussian Convolution Networks with Concentrated Graph Filters »
Mingjie Li · Xiaojun Guo · Yifei Wang · Yisen Wang · Zhouchen Lin -
2021 : Discussion Panel #1 »
Hang Su · Matthias Hein · Liwei Wang · Sven Gowal · Jan Hendrik Metzen · Henry Liu · Yisen Wang -
2021 Poster: GBHT: Gradient Boosting Histogram Transform for Density Estimation »
Jingyi Cui · Hanyuan Hang · Yisen Wang · Zhouchen Lin -
2021 Spotlight: GBHT: Gradient Boosting Histogram Transform for Density Estimation »
Jingyi Cui · Hanyuan Hang · Yisen Wang · Zhouchen Lin -
2021 Poster: Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? »
Dinghuai Zhang · Kartik Ahuja · Yilun Xu · Yisen Wang · Aaron Courville -
2021 Oral: Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? »
Dinghuai Zhang · Kartik Ahuja · Yilun Xu · Yisen Wang · Aaron Courville -
2021 Poster: Uncertainty Principles of Encoding GANs »
Ruili Feng · Zhouchen Lin · Jiapeng Zhu · Deli Zhao · Jingren Zhou · Zheng-Jun Zha -
2021 Spotlight: Uncertainty Principles of Encoding GANs »
Ruili Feng · Zhouchen Lin · Jiapeng Zhu · Deli Zhao · Jingren Zhou · Zheng-Jun Zha -
2020 Poster: PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions »
Zhengyang Shen · Lingshen He · Zhouchen Lin · Jinwen Ma -
2020 Poster: Boosted Histogram Transform for Regression »
Yuchao Cai · Hanyuan Hang · Hanfang Yang · Zhouchen Lin -
2020 Poster: Implicit Euler Skip Connections: Enhancing Adversarial Robustness via Numerical Stability »
Mingjie Li · Lingshen He · Zhouchen Lin -
2020 Poster: Maximum-and-Concatenation Networks »
Xingyu Xie · Hao Kong · Jianlong Wu · Wayne Zhang · Guangcan Liu · Zhouchen Lin -
2019 Poster: Differentiable Linearized ADMM »
Xingyu Xie · Jianlong Wu · Guangcan Liu · Zhisheng Zhong · Zhouchen Lin -
2019 Oral: Differentiable Linearized ADMM »
Xingyu Xie · Jianlong Wu · Guangcan Liu · Zhisheng Zhong · Zhouchen Lin