Timezone: »

 
Spotlight
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard Gorbunov · Konstantin Burlachenko · Zhize Li · Peter Richtarik

Wed Jul 21 05:35 AM -- 05:40 AM (PDT) @ None

We develop and analyze MARINA: a new communication efficient method for non-convex distributed learning over heterogeneous datasets. MARINA employs a novel communication compression strategy based on the compression of gradient differences that is reminiscent of but different from the strategy employed in the DIANA method of Mishchenko et al. (2019). Unlike virtually all competing distributed first-order methods, including DIANA, ours is based on a carefully designed biased gradient estimator, which is the key to its superior theoretical and practical performance. The communication complexity bounds we prove for MARINA are evidently better than those of all previous first-order methods. Further, we develop and analyze two variants of MARINA: VR-MARINA and PP-MARINA. The first method is designed for the case when the local loss functions owned by clients are either of a finite sum or of an expectation form, and the second method allows for a partial participation of clients – a feature important in federated learning. All our methods are superior to previous state-of-the-art methods in terms of oracle/communication complexity. Finally, we provide a convergence analysis of all methods for problems satisfying the Polyak-Łojasiewicz condition.

Author Information

Eduard Gorbunov (Moscow Institute of Physics and Technology)
Konstantin Burlachenko (King Abdullah University of Science and Technology.)

I am a CS Ph.D. student and member of Professor Peter Richtarik’s Optimization and Machine Learning Lab in the CEMSE Division at KAUST.

Zhize Li (King Abdullah University of Science and Technology (KAUST))
Peter Richtarik (KAUST)

Peter Richtarik is an Associate Professor of Computer Science and Mathematics at KAUST and an Associate Professor of Mathematics at the University of Edinburgh. He is an EPSRC Fellow in Mathematical Sciences, Fellow of the Alan Turing Institute, and is affiliated with the Visual Computing Center and the Extreme Computing Research Center at KAUST. Dr. Richtarik received his PhD from Cornell University in 2007, and then worked as a Postdoctoral Fellow in Louvain, Belgium, before joining Edinburgh in 2009, and KAUST in 2017. Dr. Richtarik's research interests lie at the intersection of mathematics, computer science, machine learning, optimization, numerical linear algebra, high performance computing and applied probability. Through his recent work on randomized decomposition algorithms (such as randomized coordinate descent methods, stochastic gradient descent methods and their numerous extensions, improvements and variants), he has contributed to the foundations of the emerging field of big data optimization, randomized numerical linear algebra, and stochastic methods for empirical risk minimization. Several of his papers attracted international awards, including the SIAM SIGEST Best Paper Award, the IMA Leslie Fox Prize (2nd prize, twice), and the INFORMS Computing Society Best Student Paper Award (sole runner up). He is the founder and organizer of the Optimization and Big Data workshop series.​

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors