Timezone: »
This paper develops a methodology for regret minimization with stochastic first-order oracle feedback in online, constrained, non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach for first-order methods, and there are no gradient-based algorithmic frameworks capable of providing a solution. On that account, we propose a conceptual approach that leverages non-convex optimality measures, leading to a suitable generalization of the learner's local regret. We focus on a local regret measure defined via a proximal-gradient mapping, that also encompasses the original notion proposed by Hazan et al. (2017). To achieve no local regret in this setting, we develop a proximal-gradient method based on stochastic first-order feedback, and a simpler method for when access to a perfect first-order oracle is possible. Both methods are order-optimal (in the min-max sense), and we also establish a bound on the number of proximal-gradient queries these methods require. As an important application of our results, we also obtain a link between online and offline non-convex stochastic optimization manifested as a new proximal-gradient scheme with complexity guarantees matching those obtained via variance reduction techniques.
Author Information
Nadav Hallak (The Technion)
Panayotis Mertikopoulos (CNRS and Criteo AI Lab)
Volkan Cevher (EPFL)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach »
Wed. Jul 21st 04:00 -- 06:00 PM Room
More from the Same Authors
-
2022 : Robustness in deep learning: The width (good), the depth (bad), and the initialization (ugly) »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2022 : Sound and Complete Verification of Polynomial Networks »
Elias Abad Rocamora · Mehmet Fatih Sahin · Fanghui Liu · Grigorios Chrysos · Volkan Cevher -
2023 : Adversarial Training Should Be Cast as a Non-Zero-Sum Game »
Alex Robey · Fabian Latorre · George J. Pappas · Hamed Hassani · Volkan Cevher -
2023 Oral: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2023 Poster: When do Minimax-fair Learning and Empirical Risk Minimization Coincide? »
Harvineet Singh · Matthäus Kleindessner · Volkan Cevher · Rumi Chunara · Chris Russell -
2023 Poster: Benign Overfitting in Deep Neural Networks under Lazy Training »
Zhenyu Zhu · Fanghui Liu · Grigorios Chrysos · Francesco Locatello · Volkan Cevher -
2023 Poster: What can online reinforcement learning with function approximation benefit from general coverage conditions? »
Fanghui Liu · Luca Viano · Volkan Cevher -
2023 Poster: Semi Bandit dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees. »
Ioannis Panageas · EFSTRATIOS PANTELEIMON SKOULAKIS · Luca Viano · Xiao Wang · Volkan Cevher -
2023 Poster: Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2023 : 1-Path-Norm Regularization of Deep Neural Networks »
Fabian Latorre · Antoine Bonnet · Paul Rolland · Nadav Hallak · Volkan Cevher -
2023 : 1-Path-Norm Regularization of Deep Neural Networks »
Fabian Latorre · Antoine Bonnet · Paul Rolland · Nadav Hallak · Volkan Cevher -
2022 Poster: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: Nested Bandits »
Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier · Houssam Zenati -
2022 Poster: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Oral: UnderGrad: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees »
Kimon Antonakopoulos · Dong Quan Vu · Volkan Cevher · Kfir Levy · Panayotis Mertikopoulos -
2022 Spotlight: Nested Bandits »
Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier · Houssam Zenati -
2022 Oral: Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models »
Paul Rolland · Volkan Cevher · Matthäus Kleindessner · Chris Russell · Dominik Janzing · Bernhard Schölkopf · Francesco Locatello -
2022 Poster: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2022 Spotlight: A Natural Actor-Critic Framework for Zero-Sum Markov Games »
Ahmet Alacaoglu · Luca Viano · Niao He · Volkan Cevher -
2022 Poster: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2022 Spotlight: AdaGrad Avoids Saddle Points »
Kimon Antonakopoulos · Panayotis Mertikopoulos · Georgios Piliouras · Xiao Wang -
2021 Poster: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Oral: The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets »
Ya-Ping Hsieh · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier -
2021 Spotlight: Zeroth-Order Non-Convex Learning via Hierarchical Dual Averaging »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud J Rahier -
2020 Poster: Efficient Proximal Mapping of the 1-path-norm of Shallow Networks »
Fabian Latorre · Paul Rolland · Shaul Nadav Hallak · Volkan Cevher -
2020 Poster: Conditional gradient methods for stochastically constrained convex minimization »
Maria-Luiza Vladarean · Ahmet Alacaoglu · Ya-Ping Hsieh · Volkan Cevher -
2020 Poster: Random extrapolation for primal-dual coordinate descent »
Ahmet Alacaoglu · Olivier Fercoq · Volkan Cevher -
2020 Poster: Double-Loop Unadjusted Langevin Algorithm »
Paul Rolland · Armin Eftekhari · Ali Kavis · Volkan Cevher -
2020 Poster: Gradient-free Online Learning in Continuous Games with Delayed Rewards »
Amélie Héliou · Panayotis Mertikopoulos · Zhengyuan Zhou -
2020 Poster: A new regret analysis for Adam-type algorithms »
Ahmet Alacaoglu · Yura Malitsky · Panayotis Mertikopoulos · Volkan Cevher -
2020 Poster: Finite-Time Last-Iterate Convergence for Multi-Agent Learning in Games »
Tianyi Lin · Zhengyuan Zhou · Panayotis Mertikopoulos · Michael Jordan -
2019 Poster: Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints »
Nikolaos Liakopoulos · Apostolos Destounis · Georgios Paschos · Thrasyvoulos Spyropoulos · Panayotis Mertikopoulos -
2019 Oral: Cautious Regret Minimization: Online Optimization with Long-Term Budget Constraints »
Nikolaos Liakopoulos · Apostolos Destounis · Georgios Paschos · Thrasyvoulos Spyropoulos · Panayotis Mertikopoulos -
2019 Poster: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Poster: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Finding Mixed Nash Equilibria of Generative Adversarial Networks »
Ya-Ping Hsieh · Chen Liu · Volkan Cevher -
2019 Oral: Efficient learning of smooth probability functions from Bernoulli tests with guarantees »
Paul Rolland · Ali Kavis · Alexander Niklaus Immer · Adish Singla · Volkan Cevher -
2019 Oral: Almost surely constrained convex optimization »
Olivier Fercoq · Ahmet Alacaoglu · Ion Necoara · Volkan Cevher -
2019 Poster: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2019 Poster: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Poster: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator »
Alp Yurtsever · Suvrit Sra · Volkan Cevher -
2019 Oral: A Conditional-Gradient-Based Augmented Lagrangian Framework »
Alp Yurtsever · Olivier Fercoq · Volkan Cevher -
2019 Oral: On Certifying Non-Uniform Bounds against Adversarial Attacks »
Chen Liu · Ryota Tomioka · Volkan Cevher -
2018 Poster: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Alp Yurtsever · Olivier Fercoq · Francesco Locatello · Volkan Cevher -
2018 Oral: A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming »
Alp Yurtsever · Olivier Fercoq · Francesco Locatello · Volkan Cevher -
2018 Poster: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Ehsan Asadi Kangarshahi · Ya-Ping Hsieh · Mehmet Fatih Sahin · Volkan Cevher -
2018 Poster: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter Glynn · Yinyu Ye · Li-Jia Li · Li Fei-Fei -
2018 Poster: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Oral: Let’s be Honest: An Optimal No-Regret Framework for Zero-Sum Games »
Ehsan Asadi Kangarshahi · Ya-Ping Hsieh · Mehmet Fatih Sahin · Volkan Cevher -
2018 Oral: Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods »
Junhong Lin · Volkan Cevher -
2018 Oral: Distributed Asynchronous Optimization with Unbounded Delays: How Slow Can You Go? »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter Glynn · Yinyu Ye · Li-Jia Li · Li Fei-Fei -
2018 Poster: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2018 Oral: Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces »
Junhong Lin · Volkan Cevher -
2017 Poster: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher -
2017 Talk: Robust Submodular Maximization: A Non-Uniform Partitioning Approach »
Ilija Bogunovic · Slobodan Mitrovic · Jonathan Scarlett · Volkan Cevher