Timezone: »
Designing novel protein sequences for a desired 3D topological fold is a fundamental yet non-trivial task in protein engineering. Challenges exist due to the complex sequence--fold relationship, as well as the difficulties to capture the diversity of the sequences (therefore structures and functions) within a fold. To overcome these challenges, we propose Fold2Seq, a novel transformer-based generative framework for designing protein sequences conditioned on a specific target fold. To model the complex sequence--structure relationship, Fold2Seq jointly learns a sequence embedding using a transformer and a fold embedding from the density of secondary structural elements in 3D voxels. On test sets with single, high-resolution and complete structure inputs for individual folds, our experiments demonstrate improved or comparable performance of Fold2Seq in terms of speed, coverage, and reliability for sequence design, when compared to existing state-of-the-art methods that include data-driven deep generative models and physics-based RosettaDesign. The unique advantages of fold-based Fold2Seq, in comparison to a structure-based deep model and RosettaDesign, become more evident on three additional real-world challenges originating from low-quality, incomplete, or ambiguous input structures. Source code and data are available at https://github.com/IBM/fold2seq.
Author Information
yue cao (Texas A&M University)
Payel Das (IBM Research AI)
Vijil Chenthamarakshan (IBM Research)
Pin-Yu Chen (IBM Research AI)
Igor Melnyk (IBM)
Yang Shen (Texas A&M University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
Thu. Jul 22nd 02:35 -- 02:40 AM Room
More from the Same Authors
-
2022 : Protein Representation Learning by Geometric Structure Pretraining »
Zuobai Zhang · Zuobai Zhang · Minghao Xu · Minghao Xu · Arian Jamasb · Arian Jamasb · Vijil Chenthamarakshan · Vijil Chenthamarakshan · Aurelie Lozano · Payel Das · Payel Das · Jian Tang · Jian Tang -
2023 Poster: Reprogramming Pretrained Language Models for Antibody Sequence Infilling »
Igor Melnyk · Vijil Chenthamarakshan · Pin-Yu Chen · Payel Das · Amit Dhurandhar · Inkit Padhi · Devleena Das -
2023 Poster: Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular Property Prediction »
Minghao Guo · Veronika Thost · Samuel Song · Adithya Balachandran · Payel Das · Jie Chen · Wojciech Matusik -
2023 Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Baharan Mirzasoleiman · Sanmi Koyejo -
2022 Workshop: New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Hima Lakkaraju · Sanmi Koyejo -
2022 Poster: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Poster: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Spotlight: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Spotlight: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Poster: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2022 Poster: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Spotlight: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2022 Spotlight: Biological Sequence Design with GFlowNets »
Moksh Jain · Emmanuel Bengio · Alex Hernandez-Garcia · Jarrid Rector-Brooks · Bonaventure Dossou · Chanakya Ekbote · Jie Fu · Tianyu Zhang · Michael Kilgour · Dinghuai Zhang · Lena Simine · Payel Das · Yoshua Bengio -
2022 Poster: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2022 Spotlight: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Graph Contrastive Learning Automated »
Yuning You · Tianlong Chen · Yang Shen · Zhangyang “Atlas” Wang -
2021 Oral: Graph Contrastive Learning Automated »
Yuning You · Tianlong Chen · Yang Shen · Zhangyang “Atlas” Wang -
2021 Poster: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Huck Yang · Yun-Yun Tsai · Pin-Yu Chen -
2021 Spotlight: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Huck Yang · Yun-Yun Tsai · Pin-Yu Chen -
2020 Poster: When Does Self-Supervision Help Graph Convolutional Networks? »
Yuning You · Tianlong Chen · Zhangyang “Atlas” Wang · Yang Shen -
2020 Poster: Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing »
Sanghamitra Dutta · Dennis Wei · Hazar Yueksel · Pin-Yu Chen · Sijia Liu · Kush Varshney -
2020 Poster: Proper Network Interpretability Helps Adversarial Robustness in Classification »
Akhilan Boopathy · Sijia Liu · Gaoyuan Zhang · Cynthia Liu · Pin-Yu Chen · Shiyu Chang · Luca Daniel -
2020 Poster: Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources »
Yun Yun Tsai · Pin-Yu Chen · Tsung-Yi Ho -
2020 Poster: Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case »
shuai zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2019 Poster: Estimating Information Flow in Deep Neural Networks »
Ziv Goldfeld · Ewout van den Berg · Kristjan Greenewald · Igor Melnyk · Nam Nguyen · Brian Kingsbury · Yury Polyanskiy -
2019 Oral: Estimating Information Flow in Deep Neural Networks »
Ziv Goldfeld · Ewout van den Berg · Kristjan Greenewald · Igor Melnyk · Nam Nguyen · Brian Kingsbury · Yury Polyanskiy -
2019 Poster: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Poster: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel -
2019 Oral: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Oral: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel