Timezone: »
Learning to flexibly follow task instructions in dynamic environments poses interesting challenges for reinforcement learning agents. We focus here on the problem of learning control flow that deviates from a strict step-by-step execution of instructions—that is, control flow that may skip forward over parts of the instructions or return backward to previously completed or skipped steps. Demand for such flexible control arises in two fundamental ways: explicitly when control is specified in the instructions themselves (such as conditional branching and looping) and implicitly when stochastic environment dynamics require re-completion of instructions whose effects have been perturbed, or opportunistic skipping of instructions whose effects are already present. We formulate an attention-based architecture that meets these challenges by learning, from task reward only, to flexibly attend to and condition behavior on an internal encoding of the instructions. We test the architecture's ability to learn both explicit and implicit control in two illustrative domains---one inspired by Minecraft and the other by StarCraft---and show that the architecture exhibits zero-shot generalization to novel instructions of length greater than those in a training set, at a performance level unmatched by three baseline recurrent architectures and one ablation architecture.
Author Information
Ethan Brooks (University of Michigan)
Janarthanan Rajendran (Mila - Quebec Artificial Intelligence Institute)
Richard Lewis (University of Michigan)
Satinder Singh (University of Michigan)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Reinforcement Learning of Implicit and Explicit Control Flow Instructions »
Wed. Jul 21st 04:00 -- 06:00 AM Room
More from the Same Authors
-
2022 Poster: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Spotlight: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2018 Poster: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2018 Oral: Self-Imitation Learning »
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee -
2017 Poster: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli -
2017 Talk: Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning »
Junhyuk Oh · Satinder Singh · Honglak Lee · Pushmeet Kohli