Timezone: »
Bridging logical and algorithmic reasoning with modern machine learning techniques is a fundamental challenge with potentially transformative impact. On the algorithmic side, many NP-hard problems can be expressed as integer programs, in which the constraints play the role of their 'combinatorial specification'. In this work, we aim to integrate integer programming solvers into neural network architectures as layers capable of learning both the cost terms and the constraints. The resulting end-to-end trainable architectures jointly extract features from raw data and solve a suitable (learned) combinatorial problem with state-of-the-art integer programming solvers. We demonstrate the potential of such layers with an extensive performance analysis on synthetic data and with a demonstration on a competitive computer vision keypoint matching benchmark.
Author Information
Anselm Paulus (Max Planck Institute For Intelligent Systems)
Michal Rolinek (Max Planck Institute for Intelligent Systems)
Vit Musil (Masaryk University)
Brandon Amos (Facebook AI Research)
Georg Martius (Max Planck Institute for Intelligent Systems)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints »
Wed. Jul 21st 04:00 -- 06:00 AM Room Virtual
More from the Same Authors
-
2021 : Neural Fixed-Point Acceleration for Convex Optimization »
Shobha Venkataraman · Brandon Amos -
2021 : Planning from Pixels in Environments with Combinatorially Hard Search Spaces »
Marco Bagatella · Miroslav Olšák · Michal Rolinek · Georg Martius -
2023 : Neural Optimal Transport with Lagrangian Costs »
Aram-Alexandre Pooladian · Carles Domingo i Enrich · Ricky T. Q. Chen · Brandon Amos -
2023 : Koopman Constrained Policy Optimization: A Koopman operator theoretic method for differentiable optimal control in robotics »
Matthew Retchin · Brandon Amos · Steven Brunton · Shuran Song -
2023 : TaskMet: Task-Driven Metric Learning for Model Learning »
Dishank Bansal · Ricky T. Q. Chen · Mustafa Mukadam · Brandon Amos -
2023 : Lagrangian Proximal Gradient Descent for Learning Convex Optimization Models »
Anselm Paulus · Vit Musil · Georg Martius -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : Landscape Surrogate: Learning Decision Losses for Mathematical Optimization Under Partial Information »
Arman Zharmagambetov · Brandon Amos · Aaron Ferber · Taoan Huang · Bistra Dilkina · Yuandong Tian -
2023 : On optimal control and machine learning »
Brandon Amos -
2023 Poster: Meta Optimal Transport »
Brandon Amos · Giulia Luise · samuel cohen · Ievgen Redko -
2023 Poster: Multisample Flow Matching: Straightening Flows with Minibatch Couplings »
Aram-Alexandre Pooladian · Heli Ben-Hamu · Carles Domingo i Enrich · Brandon Amos · Yaron Lipman · Ricky T. Q. Chen -
2023 Poster: Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories »
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover -
2022 : Differentiable optimization for control and reinforcement learning »
Brandon Amos -
2022 Poster: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2022 Spotlight: Matching Normalizing Flows and Probability Paths on Manifolds »
Heli Ben-Hamu · samuel cohen · Joey Bose · Brandon Amos · Maximilian Nickel · Aditya Grover · Ricky T. Q. Chen · Yaron Lipman -
2021 : Oral Presentation: Planning from Pixels in Environments with Combinatorially Hard Search Spaces »
Georg Martius · Marco Bagatella -
2021 Poster: Demystifying Inductive Biases for (Beta-)VAE Based Architectures »
Dominik Zietlow · Michal Rolinek · Georg Martius -
2021 Spotlight: Demystifying Inductive Biases for (Beta-)VAE Based Architectures »
Dominik Zietlow · Michal Rolinek · Georg Martius -
2021 Poster: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Poster: Neuro-algorithmic Policies Enable Fast Combinatorial Generalization »
Marin Vlastelica · Michal Rolinek · Georg Martius -
2021 Spotlight: Riemannian Convex Potential Maps »
samuel cohen · Brandon Amos · Yaron Lipman -
2021 Spotlight: Neuro-algorithmic Policies Enable Fast Combinatorial Generalization »
Marin Vlastelica · Michal Rolinek · Georg Martius -
2020 Poster: The Differentiable Cross-Entropy Method »
Brandon Amos · Denis Yarats -
2018 Poster: Learning equations for extrapolation and control »
Subham S Sahoo · Christoph H. Lampert · Georg Martius -
2018 Oral: Learning equations for extrapolation and control »
Subham S Sahoo · Christoph H. Lampert · Georg Martius