Timezone: »
As humans interact with autonomous agents to perform increasingly complicated, potentially risky tasks, it is important to be able to efficiently evaluate an agent's performance and correctness. In this paper we formalize and theoretically analyze the problem of efficient value alignment verification: how to efficiently test whether the behavior of another agent is aligned with a human's values? The goal is to construct a kind of "driver's test" that a human can give to any agent which will verify value alignment via a minimal number of queries. We study alignment verification problems with both idealized humans that have an explicit reward function as well as problems where they have implicit values. We analyze verification of exact value alignment for rational agents, propose and test heuristics for value alignment verification in gridworlds and a continuous autonomous driving domain, and prove that there exist sufficient conditions such that we can verify epsilon-alignment in any environment via a constant-query-complexity alignment test.
Author Information
Daniel Brown (UC Berkeley)
Jordan Schneider (UT Austin)
Anca Dragan (University of California, Berkeley)
Scott Niekum (University of Texas at Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Value Alignment Verification »
Tue. Jul 20th 01:45 -- 01:50 PM Room
More from the Same Authors
-
2022 : A Study of Causal Confusion in Preference-Based Reward Learning »
Jeremy Tien · Zhiyang He · Zackory Erickson · Anca Dragan · Daniel S Brown -
2023 : Preventing Reward Hacking with Occupancy Measure Regularization »
Cassidy Laidlaw · Shivam Singhal · Anca Dragan -
2023 : Preventing Reward Hacking with Occupancy Measure Regularization »
Cassidy Laidlaw · Shivam Singhal · Anca Dragan -
2023 : Video-Guided Skill Discovery »
Manan Tomar · Dibya Ghosh · Vivek Myers · Anca Dragan · Matthew Taylor · Philip Bachman · Sergey Levine -
2023 Workshop: Interactive Learning with Implicit Human Feedback »
Andi Peng · Akanksha Saran · Andreea Bobu · Tengyang Xie · Pierre-Yves Oudeyer · Anca Dragan · John Langford -
2023 : Bridging RL Theory and Practice with the Effective Horizon »
Cassidy Laidlaw · Stuart Russell · Anca Dragan -
2023 : Learning Optimal Advantage from Preferences and Mistaking it for Reward »
William Knox · Stephane Hatgis-Kessell · Sigurdur Adalgeirsson · Serena Booth · Anca Dragan · Peter Stone · Scott Niekum -
2023 Poster: Contextual Reliability: When Different Features Matter in Different Contexts »
Gaurav Ghosal · Amrith Setlur · Daniel S Brown · Anca Dragan · Aditi Raghunathan -
2023 Poster: Automatically Auditing Large Language Models via Discrete Optimization »
Erik Jones · Anca Dragan · Aditi Raghunathan · Jacob Steinhardt -
2022 Poster: Estimating and Penalizing Induced Preference Shifts in Recommender Systems »
Micah Carroll · Anca Dragan · Stuart Russell · Dylan Hadfield-Menell -
2022 Spotlight: Estimating and Penalizing Induced Preference Shifts in Recommender Systems »
Micah Carroll · Anca Dragan · Stuart Russell · Dylan Hadfield-Menell -
2022 : Learning to interact: PARTIAL OBSERVABILITY + GAME Theory of mind on steroids »
Anca Dragan -
2022 : Learning to interact: PARTIAL OBSERVABILITY The actions you take as part of the task are the queries! »
Anca Dragan -
2022 : Q&A »
Dorsa Sadigh · Anca Dragan -
2022 Tutorial: Learning for Interactive Agents »
Dorsa Sadigh · Anca Dragan -
2022 : Learning objectives and preferences: WHAT DATA? From diverse types of human data »
Anca Dragan -
2021 : Scaling up Probabilistic Safe Learning »
Scott Niekum -
2021 Poster: Policy Gradient Bayesian Robust Optimization for Imitation Learning »
Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg -
2021 Spotlight: Policy Gradient Bayesian Robust Optimization for Imitation Learning »
Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg -
2020 : Invited Talk 7: Prof. Anca Dragan from UC Berkeley »
Anca Dragan -
2020 : "Active Learning through Physically-embodied, Synthesized-from-“scratch” Queries" »
Anca Dragan -
2020 Poster: Learning Human Objectives by Evaluating Hypothetical Behavior »
Siddharth Reddy · Anca Dragan · Sergey Levine · Shane Legg · Jan Leike -
2020 Poster: Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences »
Daniel Brown · Russell Coleman · Ravi Srinivasan · Scott Niekum -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Poster: Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations »
Daniel Brown · Wonjoon Goo · Prabhat Nagarajan · Scott Niekum -
2019 Oral: Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations »
Daniel Brown · Wonjoon Goo · Prabhat Nagarajan · Scott Niekum -
2019 Poster: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Poster: Importance Sampling Policy Evaluation with an Estimated Behavior Policy »
Josiah Hanna · Scott Niekum · Peter Stone -
2019 Oral: Importance Sampling Policy Evaluation with an Estimated Behavior Policy »
Josiah Hanna · Scott Niekum · Peter Stone -
2019 Oral: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2018 Poster: An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning »
Dhruv Malik · Malayandi Palaniappan · Jaime Fisac · Dylan Hadfield-Menell · Stuart Russell · Anca Dragan -
2018 Oral: An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning »
Dhruv Malik · Malayandi Palaniappan · Jaime Fisac · Dylan Hadfield-Menell · Stuart Russell · Anca Dragan -
2017 Poster: Data-Efficient Policy Evaluation Through Behavior Policy Search »
Josiah Hanna · Philip S. Thomas · Peter Stone · Scott Niekum -
2017 Talk: Data-Efficient Policy Evaluation Through Behavior Policy Search »
Josiah Hanna · Philip S. Thomas · Peter Stone · Scott Niekum