Timezone: »

 
Spotlight
Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez

Thu Jul 22 06:35 PM -- 06:40 PM (PDT) @

Training on datasets with long-tailed distributions has been challenging for major recognition tasks such as classification and detection. To deal with this challenge, image resampling is typically introduced as a simple but effective approach. However, we observe that long-tailed detection differs from classification since multiple classes may be present in one image. As a result, image resampling alone is not enough to yield a sufficiently balanced distribution at the object-level. We address object-level resampling by introducing an object-centric sampling strategy based on a dynamic, episodic memory bank. Our proposed strategy has two benefits: 1) convenient object-level resampling without significant extra computation, and 2) implicit feature-level augmentation from model updates. We show that image-level and object-level resamplings are both important, and thus unify them with a joint resampling strategy. Our method achieves state-of-the-art performance on the rare categories of LVIS, with 1.89% and 3.13% relative improvements over Forest R-CNN on detection and instance segmentation.

Author Information

Nadine Chang (Carnegie Mellon University)
Zhiding Yu (NVIDIA)

Zhiding Yu is a Senior Research Scientist at NVIDIA. Before joining NVIDIA in 2018, he received Ph.D. in ECE from Carnegie Mellon University in 2017, and M.Phil. in ECE from The Hong Kong University of Science and Technology in 2012. His research interests mainly focus on deep representation learning, weakly/self-supervised learning, transfer learning and deep structured prediction, with their applications to vision and robotics problems.

Yu-Xiong Wang (University of Illinois at Urbana-Champaign)
Anima Anandkumar (Caltech and NVIDIA)

Anima Anandkumar is a Bren Professor at Caltech and Director of ML Research at NVIDIA. She was previously a Principal Scientist at Amazon Web Services. She is passionate about designing principled AI algorithms and applying them to interdisciplinary domains. She has received several honors such as the IEEE fellowship, Alfred. P. Sloan Fellowship, NSF Career Award, Young investigator awards from DoD, Venturebeat’s “women in AI” award, NYTimes GoodTech award, and Faculty Fellowships from Microsoft, Google, Facebook, and Adobe. She is part of the World Economic Forum's Expert Network. She has appeared in the PBS Frontline documentary on the “Amazon empire” and has given keynotes in many forums such as the TEDx, KDD, ICLR, and ACM. Anima received her BTech from Indian Institute of Technology Madras, her PhD from Cornell University, and did her postdoctoral research at MIT and assistant professorship at University of California Irvine.

Sanja Fidler (University of Toronto, NVIDIA)
Jose Alvarez (NVIDIA)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors