Timezone: »
We present a novel approach to Bayesian inference and general Bayesian computation that is defined through a sequential decision loop. Our method defines a recursive partitioning of the sample space. It neither relies on gradients nor requires any problem-specific tuning, and is asymptotically exact for any density function with a bounded domain. The output is an approximation to the whole density function including the normalisation constant, via partitions organised in efficient data structures. Such approximations may be used for evidence estimation or fast posterior sampling, but also as building blocks to treat a larger class of estimation problems. The algorithm shows competitive performance to recent state-of-the-art methods on synthetic and real-world problems including parameter inference for gravitational-wave physics.
Author Information
Erik Bodin (The Alan Turing Institute)
Zhenwen Dai (Spotify)
Neill Campbell (University of Bath)
Carl Henrik Ek (University of Cambridge)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Black-box density function estimation using recursive partitioning »
Fri. Jul 23rd 12:45 -- 12:50 AM Room
More from the Same Authors
-
2020 : Open Problems Panel »
Alessandra Tosi · Nathan Korda · Yuzhui Liu · Zhenwen Dai · Zhenwen Dai · Alexander Lavin · Erick Galinkin · Camylle Lanteigne -
2020 Poster: Modulating Surrogates for Bayesian Optimization »
Erik Bodin · Markus Kaiser · Ieva Kazlauskaite · Zhenwen Dai · Neill Campbell · Carl Henrik Ek -
2019 Poster: DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures »
Andrew R Lawrence · Carl Henrik Ek · Neill Campbell -
2019 Oral: DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures »
Andrew R Lawrence · Carl Henrik Ek · Neill Campbell -
2018 Poster: Structured Variationally Auto-encoded Optimization »
Xiaoyu Lu · Javier González · Zhenwen Dai · Neil Lawrence -
2018 Oral: Structured Variationally Auto-encoded Optimization »
Xiaoyu Lu · Javier González · Zhenwen Dai · Neil Lawrence -
2017 Poster: Preferential Bayesian Optmization »
Javier González · Zhenwen Dai · Andreas Damianou · Neil Lawrence -
2017 Talk: Preferential Bayesian Optmization »
Javier González · Zhenwen Dai · Andreas Damianou · Neil Lawrence