Timezone: »

Composing Normalizing Flows for Inverse Problems
Jay Whang · Erik Lindgren · Alexandros Dimakis

Wed Jul 21 09:00 AM -- 11:00 AM (PDT) @ None #None

Given an inverse problem with a normalizing flow prior, we wish to estimate the distribution of the underlying signal conditioned on the observations. We approach this problem as a task of conditional inference on the pre-trained unconditional flow model. We first establish that this is computationally hard for a large class of flow models. Motivated by this, we propose a framework for approximate inference that estimates the target conditional as a composition of two flow models. This formulation leads to a stable variational inference training procedure that avoids adversarial training. Our method is evaluated on a variety of inverse problems and is shown to produce high-quality samples with uncertainty quantification. We further demonstrate that our approach can be amortized for zero-shot inference.

Author Information

Jay Whang (The University of Texas at Austin)
Erik Lindgren (Google Research)
Alexandros Dimakis (UT Austin)

Alex Dimakis is an Associate Professor at the Electrical and Computer Engineering department, University of Texas at Austin. He received his Ph.D. in electrical engineering and computer sciences from UC Berkeley. He received an ARO young investigator award in 2014, the NSF Career award in 2011, a Google faculty research award in 2012 and the Eli Jury dissertation award in 2008. He is the co-recipient of several best paper awards including the joint Information Theory and Communications Society Best Paper Award in 2012. His research interests include information theory, coding theory and machine learning.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors