Timezone: »
We study image inverse problems with a normalizing flow prior. Our formulation views the solution as the maximum a posteriori estimate of the image conditioned on the measurements. This formulation allows us to use noise models with arbitrary dependencies as well as non-linear forward operators. We empirically validate the efficacy of our method on various inverse problems, including compressed sensing with quantized measurements and denoising with highly structured noise patterns. We also present initial theoretical recovery guarantees for solving inverse problems with a flow prior.
Author Information
Jay Whang (The University of Texas at Austin)
Qi Lei (Princeton University)
Alexandros Dimakis (UT Austin)
Alex Dimakis is an Associate Professor at the Electrical and Computer Engineering department, University of Texas at Austin. He received his Ph.D. in electrical engineering and computer sciences from UC Berkeley. He received an ARO young investigator award in 2014, the NSF Career award in 2011, a Google faculty research award in 2012 and the Eli Jury dissertation award in 2008. He is the co-recipient of several best paper awards including the joint Information Theory and Communications Society Best Paper Award in 2012. His research interests include information theory, coding theory and machine learning.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Solving Inverse Problems with a Flow-based Noise Model »
Thu. Jul 22nd 01:45 -- 01:50 AM Room
More from the Same Authors
-
2021 : A Short Note on the Relationship of Information Gain and Eluder Dimension »
Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei -
2023 Poster: Restoration-Degradation Beyond Linear Diffusions: A Non-Asymptotic Analysis For DDIM-type Samplers »
Sitan Chen · Giannis Daras · Alexandros Dimakis -
2022 Poster: Score-Guided Intermediate Level Optimization: Fast Langevin Mixing for Inverse Problems »
Giannis Daras · Yuval Dagan · Alexandros Dimakis · Constantinos Daskalakis -
2022 Spotlight: Score-Guided Intermediate Level Optimization: Fast Langevin Mixing for Inverse Problems »
Giannis Daras · Yuval Dagan · Alexandros Dimakis · Constantinos Daskalakis -
2021 : Invited Talk: Alex Dimakis »
Alexandros Dimakis -
2021 Poster: Provable Lipschitz Certification for Generative Models »
Matt Jordan · Alexandros Dimakis -
2021 Spotlight: Provable Lipschitz Certification for Generative Models »
Matt Jordan · Alexandros Dimakis -
2021 Poster: Fairness for Image Generation with Uncertain Sensitive Attributes »
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price -
2021 Spotlight: Fairness for Image Generation with Uncertain Sensitive Attributes »
Ajil Jalal · Sushrut Karmalkar · Jessica Hoffmann · Alexandros Dimakis · Eric Price -
2021 Poster: Near-Optimal Linear Regression under Distribution Shift »
Qi Lei · Wei Hu · Jason Lee -
2021 Poster: A Theory of Label Propagation for Subpopulation Shift »
Tianle Cai · Ruiqi Gao · Jason Lee · Qi Lei -
2021 Spotlight: A Theory of Label Propagation for Subpopulation Shift »
Tianle Cai · Ruiqi Gao · Jason Lee · Qi Lei -
2021 Spotlight: Near-Optimal Linear Regression under Distribution Shift »
Qi Lei · Wei Hu · Jason Lee -
2021 Poster: Instance-Optimal Compressed Sensing via Posterior Sampling »
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price -
2021 Poster: Intermediate Layer Optimization for Inverse Problems using Deep Generative Models »
Giannis Daras · Joseph Dean · Ajil Jalal · Alexandros Dimakis -
2021 Poster: Composing Normalizing Flows for Inverse Problems »
Jay Whang · Erik Lindgren · Alexandros Dimakis -
2021 Spotlight: Intermediate Layer Optimization for Inverse Problems using Deep Generative Models »
Giannis Daras · Joseph Dean · Ajil Jalal · Alexandros Dimakis -
2021 Spotlight: Instance-Optimal Compressed Sensing via Posterior Sampling »
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price -
2021 Spotlight: Composing Normalizing Flows for Inverse Problems »
Jay Whang · Erik Lindgren · Alexandros Dimakis -
2020 Poster: SGD Learns One-Layer Networks in WGANs »
Qi Lei · Jason Lee · Alexandros Dimakis · Constantinos Daskalakis -
2019 : Alex Dimakis: Coding Theory for Distributed Learning »
Alexandros Dimakis -
2019 Poster: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2019 Oral: Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling »
Shanshan Wu · Alexandros Dimakis · Sujay Sanghavi · Felix Xinnan Yu · Daniel Holtmann-Rice · Dmitry Storcheus · Afshin Rostamizadeh · Sanjiv Kumar -
2018 Poster: Gradient Coding from Cyclic MDS Codes and Expander Graphs »
Netanel Raviv · Rashish Tandon · Alexandros Dimakis · Itzhak Tamo -
2018 Oral: Gradient Coding from Cyclic MDS Codes and Expander Graphs »
Netanel Raviv · Rashish Tandon · Alexandros Dimakis · Itzhak Tamo -
2017 Poster: Identifying Best Interventions through Online Importance Sampling »
Rajat Sen · Karthikeyan Shanmugam · Alexandros Dimakis · Sanjay Shakkottai -
2017 Poster: Cost-Optimal Learning of Causal Graphs »
Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2017 Poster: On Approximation Guarantees for Greedy Low Rank Optimization »
RAJIV KHANNA · Ethan R. Elenberg · Alexandros Dimakis · Joydeep Ghosh · Sahand Negahban -
2017 Talk: Identifying Best Interventions through Online Importance Sampling »
Rajat Sen · Karthikeyan Shanmugam · Alexandros Dimakis · Sanjay Shakkottai -
2017 Talk: On Approximation Guarantees for Greedy Low Rank Optimization »
RAJIV KHANNA · Ethan R. Elenberg · Alexandros Dimakis · Joydeep Ghosh · Sahand Negahban -
2017 Talk: Cost-Optimal Learning of Causal Graphs »
Murat Kocaoglu · Alexandros Dimakis · Sriram Vishwanath -
2017 Poster: Exact MAP Inference by Avoiding Fractional Vertices »
Erik Lindgren · Alexandros Dimakis · Adam Klivans -
2017 Poster: Compressed Sensing using Generative Models »
Ashish Bora · Ajil Jalal · Eric Price · Alexandros Dimakis -
2017 Poster: Gradient Coding: Avoiding Stragglers in Distributed Learning »
Rashish Tandon · Qi Lei · Alexandros Dimakis · Nikos Karampatziakis -
2017 Talk: Gradient Coding: Avoiding Stragglers in Distributed Learning »
Rashish Tandon · Qi Lei · Alexandros Dimakis · Nikos Karampatziakis -
2017 Talk: Compressed Sensing using Generative Models »
Ashish Bora · Ajil Jalal · Eric Price · Alexandros Dimakis -
2017 Talk: Exact MAP Inference by Avoiding Fractional Vertices »
Erik Lindgren · Alexandros Dimakis · Adam Klivans