Timezone: »

Solving Inverse Problems with a Flow-based Noise Model
Jay Whang · Qi Lei · Alexandros Dimakis

Wed Jul 21 09:00 PM -- 11:00 PM (PDT) @

We study image inverse problems with a normalizing flow prior. Our formulation views the solution as the maximum a posteriori estimate of the image conditioned on the measurements. This formulation allows us to use noise models with arbitrary dependencies as well as non-linear forward operators. We empirically validate the efficacy of our method on various inverse problems, including compressed sensing with quantized measurements and denoising with highly structured noise patterns. We also present initial theoretical recovery guarantees for solving inverse problems with a flow prior.

Author Information

Jay Whang (The University of Texas at Austin)
Qi Lei (Princeton University)
Alexandros Dimakis (UT Austin)

Alex Dimakis is an Associate Professor at the Electrical and Computer Engineering department, University of Texas at Austin. He received his Ph.D. in electrical engineering and computer sciences from UC Berkeley. He received an ARO young investigator award in 2014, the NSF Career award in 2011, a Google faculty research award in 2012 and the Eli Jury dissertation award in 2008. He is the co-recipient of several best paper awards including the joint Information Theory and Communications Society Best Paper Award in 2012. His research interests include information theory, coding theory and machine learning.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors