Timezone: »
Sequence learning has attracted much research attention from the machine learning community in recent years. In many applications, a sequence learning task is usually associated with multiple temporally correlated auxiliary tasks, which are different in terms of how much input information to use or which future step to predict. For example, (i) in simultaneous machine translation, one can conduct translation under different latency (i.e., how many input words to read/wait before translation); (ii) in stock trend forecasting, one can predict the price of a stock in different future days (e.g., tomorrow, the day after tomorrow). While it is clear that those temporally correlated tasks can help each other, there is a very limited exploration on how to better leverage multiple auxiliary tasks to boost the performance of the main task. In this work, we introduce a learnable scheduler to sequence learning, which can adaptively select auxiliary tasks for training depending on the model status and the current training data. The scheduler and the model for the main task are jointly trained through bi-level optimization. Experiments show that our method significantly improves the performance of simultaneous machine translation and stock trend forecasting.
Author Information
Xueqing Wu (University of Science and Technology of China)
Lewen Wang (Microsoft Research Asia)
Yingce Xia (Microsoft Research Asia)
Weiqing Liu (Microsoft Research)
Lijun Wu (Microsoft Research)
Shufang Xie (Microsoft Research Asia)
Tao Qin (Microsoft Research Asia)
Tie-Yan Liu (Microsoft Research Asia)
Tie-Yan Liu is a principal researcher of Microsoft Research Asia, leading the research on artificial intelligence and machine learning. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. On the other hand, he has been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. His papers have been cited for tens of thousands of times in refereed conferences and journals. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, a distinguished member of the ACM, and a vice chair of the CIPS information retrieval technical committee.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Temporally Correlated Task Scheduling for Sequence Learning »
Wed. Jul 21st 04:00 -- 06:00 AM Room
More from the Same Authors
-
2021 : Distance-Enhanced Graph Neural Network for Link Prediction »
Yingce Xia · Yingce Xia -
2023 Poster: Retrosynthetic Planning with Dual Value Networks »
Guoqing Liu · Di Xue · Shufang Xie · Yingce Xia · Austin Tripp · Krzysztof Maziarz · Marwin Segler · Tao Qin · Zongzhang Zhang · Tie-Yan Liu -
2022 Poster: SE(3) Equivariant Graph Neural Networks with Complete Local Frames »
weitao du · He Zhang · Yuanqi Du · Qi Meng · Wei Chen · Nanning Zheng · Bin Shao · Tie-Yan Liu -
2022 Spotlight: SE(3) Equivariant Graph Neural Networks with Complete Local Frames »
weitao du · He Zhang · Yuanqi Du · Qi Meng · Wei Chen · Nanning Zheng · Bin Shao · Tie-Yan Liu -
2022 Poster: Analyzing and Mitigating Interference in Neural Architecture Search »
Jin Xu · Xu Tan · Kaitao Song · Renqian Luo · Yichong Leng · Tao Qin · Tie-Yan Liu · Jian Li -
2022 Poster: Supervised Off-Policy Ranking »
Yue Jin · Yue Zhang · Tao Qin · Xudong Zhang · Jian Yuan · Houqiang Li · Tie-Yan Liu -
2022 Spotlight: Supervised Off-Policy Ranking »
Yue Jin · Yue Zhang · Tao Qin · Xudong Zhang · Jian Yuan · Houqiang Li · Tie-Yan Liu -
2022 Spotlight: Analyzing and Mitigating Interference in Neural Architecture Search »
Jin Xu · Xu Tan · Kaitao Song · Renqian Luo · Yichong Leng · Tao Qin · Tie-Yan Liu · Jian Li -
2021 Poster: Large Scale Private Learning via Low-rank Reparametrization »
Da Yu · Huishuai Zhang · Wei Chen · Jian Yin · Tie-Yan Liu -
2021 Spotlight: Large Scale Private Learning via Low-rank Reparametrization »
Da Yu · Huishuai Zhang · Wei Chen · Jian Yin · Tie-Yan Liu -
2021 Poster: The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks »
Bohan Wang · Qi Meng · Wei Chen · Tie-Yan Liu -
2021 Oral: The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks »
Bohan Wang · Qi Meng · Wei Chen · Tie-Yan Liu -
2021 Poster: GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training »
Tianle Cai · Shengjie Luo · Keyulu Xu · Di He · Tie-Yan Liu · Liwei Wang -
2021 Spotlight: GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training »
Tianle Cai · Shengjie Luo · Keyulu Xu · Di He · Tie-Yan Liu · Liwei Wang -
2020 Poster: On Layer Normalization in the Transformer Architecture »
Ruibin Xiong · Yunchang Yang · Di He · Kai Zheng · Shuxin Zheng · Chen Xing · Huishuai Zhang · Yanyan Lan · Liwei Wang · Tie-Yan Liu -
2020 Poster: Sequence Generation with Mixed Representations »
Lijun Wu · Shufang Xie · Yingce Xia · Yang Fan · Jian-Huang Lai · Tao Qin · Tie-Yan Liu -
2019 Poster: MASS: Masked Sequence to Sequence Pre-training for Language Generation »
Kaitao Song · Xu Tan · Tao Qin · Jianfeng Lu · Tie-Yan Liu -
2019 Poster: Efficient Training of BERT by Progressively Stacking »
Linyuan Gong · Di He · Zhuohan Li · Tao Qin · Liwei Wang · Tie-Yan Liu -
2019 Poster: Almost Unsupervised Text to Speech and Automatic Speech Recognition »
Yi Ren · Xu Tan · Tao Qin · Sheng Zhao · Zhou Zhao · Tie-Yan Liu -
2019 Oral: Efficient Training of BERT by Progressively Stacking »
Linyuan Gong · Di He · Zhuohan Li · Tao Qin · Liwei Wang · Tie-Yan Liu -
2019 Oral: MASS: Masked Sequence to Sequence Pre-training for Language Generation »
Kaitao Song · Xu Tan · Tao Qin · Jianfeng Lu · Tie-Yan Liu -
2019 Oral: Almost Unsupervised Text to Speech and Automatic Speech Recognition »
Yi Ren · Xu Tan · Tao Qin · Sheng Zhao · Zhou Zhao · Tie-Yan Liu -
2018 Poster: Towards Binary-Valued Gates for Robust LSTM Training »
Zhuohan Li · Di He · Fei Tian · Wei Chen · Tao Qin · Liwei Wang · Tie-Yan Liu -
2018 Oral: Towards Binary-Valued Gates for Robust LSTM Training »
Zhuohan Li · Di He · Fei Tian · Wei Chen · Tao Qin · Liwei Wang · Tie-Yan Liu -
2018 Poster: Model-Level Dual Learning »
Yingce Xia · Xu Tan · Fei Tian · Tao Qin · Nenghai Yu · Tie-Yan Liu -
2018 Oral: Model-Level Dual Learning »
Yingce Xia · Xu Tan · Fei Tian · Tao Qin · Nenghai Yu · Tie-Yan Liu -
2017 Poster: Dual Supervised Learning »
Yingce Xia · Tao Qin · Wei Chen · Jiang Bian · Nenghai Yu · Tie-Yan Liu -
2017 Talk: Dual Supervised Learning »
Yingce Xia · Tao Qin · Wei Chen · Jiang Bian · Nenghai Yu · Tie-Yan Liu