Timezone: »

 
Poster
Temporally Correlated Task Scheduling for Sequence Learning
Xueqing Wu · Lewen Wang · Yingce Xia · Weiqing Liu · Lijun Wu · Shufang Xie · Tao Qin · Tie-Yan Liu

Tue Jul 20 09:00 PM -- 11:00 PM (PDT) @ None #None

Sequence learning has attracted much research attention from the machine learning community in recent years. In many applications, a sequence learning task is usually associated with multiple temporally correlated auxiliary tasks, which are different in terms of how much input information to use or which future step to predict. For example, (i) in simultaneous machine translation, one can conduct translation under different latency (i.e., how many input words to read/wait before translation); (ii) in stock trend forecasting, one can predict the price of a stock in different future days (e.g., tomorrow, the day after tomorrow). While it is clear that those temporally correlated tasks can help each other, there is a very limited exploration on how to better leverage multiple auxiliary tasks to boost the performance of the main task. In this work, we introduce a learnable scheduler to sequence learning, which can adaptively select auxiliary tasks for training depending on the model status and the current training data. The scheduler and the model for the main task are jointly trained through bi-level optimization. Experiments show that our method significantly improves the performance of simultaneous machine translation and stock trend forecasting.

Author Information

Xueqing Wu (University of Science and Technology of China)
Lewen Wang (Microsoft Research Asia)
Yingce Xia (Microsoft Research Asia)
Weiqing Liu (Microsoft Research)
Lijun Wu (Microsoft Research)
Shufang Xie (Microsoft Research Asia)
Tao Qin (Microsoft Research Asia)
Tie-Yan Liu (Microsoft Research Asia)

Tie-Yan Liu is a principal researcher of Microsoft Research Asia, leading the research on artificial intelligence and machine learning. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. On the other hand, he has been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. His papers have been cited for tens of thousands of times in refereed conferences and journals. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, a distinguished member of the ACM, and a vice chair of the CIPS information retrieval technical committee.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors