Timezone: »
Randomized smoothing is a general technique for computing sample-dependent robustness guarantees against adversarial attacks for deep classifiers. Prior works on randomized smoothing against L1 adversarial attacks use additive smoothing noise and provide probabilistic robustness guarantees. In this work, we propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN). To develop DSSN, we first develop SSN, a randomized method which involves generating each noisy smoothing sample by first randomly splitting the input space and then returning a representation of the center of the subdivision occupied by the input sample. In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent. Thus, smoothing can be done effectively in just one dimension and can therefore be efficiently derandomized for quantized data (e.g., images). To the best of our knowledge, this is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model while allowing for an arbitrary classifier (i.e., a deep model) to be used as a base classifier and without requiring an exponential number of smoothing samples. On CIFAR-10 and ImageNet datasets, we provide substantially larger L1 robustness certificates compared to prior works, establishing a new state-of-the-art. The determinism of our method also leads to significantly faster certificate computation. Code is available at: https://github.com/alevine0/smoothingSplittingNoise.
Author Information
Alexander Levine (University of Maryland)
Soheil Feizi (University of Maryland)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Improved, Deterministic Smoothing for L_1 Certified Robustness »
Thu. Jul 22nd 01:00 -- 01:20 PM Room
More from the Same Authors
-
2022 : Towards Better Understanding of Self-Supervised Representations »
Neha Mukund Kalibhat · Kanika Narang · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2022 : Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 : Certifiably Robust Multi-Agent Reinforcement Learning against Adversarial Communication »
Yanchao Sun · Ruijie Zheng · Parisa Hassanzadeh · Yongyuan Liang · Soheil Feizi · Sumitra Ganesh · Furong Huang -
2023 Poster: Text-To-Concept (and Back) via Cross-Model Alignment »
Mazda Moayeri · Keivan Rezaei · Maziar Sanjabi · Soheil Feizi -
2023 Poster: Identifying Interpretable Subspaces in Image Representations »
Neha Mukund Kalibhat · Shweta Bhardwaj · C. Bayan Bruss · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2023 Poster: Run-off Election: Improved Provable Defense against Data Poisoning Attacks »
Keivan Rezaei · Kiarash Banihashem · Atoosa Chegini · Soheil Feizi -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 : Toward Efficient Robust Training against Union of Lp Threat Models »
Gaurang Sriramanan · Maharshi Gor · Soheil Feizi -
2022 Poster: Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 Poster: FOCUS: Familiar Objects in Common and Uncommon Settings »
Priyatham Kattakinda · Soheil Feizi -
2022 Spotlight: Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation »
Wenxiao Wang · Alexander Levine · Soheil Feizi -
2022 Spotlight: FOCUS: Familiar Objects in Common and Uncommon Settings »
Priyatham Kattakinda · Soheil Feizi -
2021 : Invited Talk 6: T​owards Understanding Foundations of Robust Learning »
Soheil Feizi -
2021 Poster: Skew Orthogonal Convolutions »
Sahil Singla · Soheil Feizi -
2021 Spotlight: Skew Orthogonal Convolutions »
Sahil Singla · Soheil Feizi -
2020 Poster: Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness »
Aounon Kumar · Alexander Levine · Tom Goldstein · Soheil Feizi -
2020 Poster: Second-Order Provable Defenses against Adversarial Attacks »
Sahil Singla · Soheil Feizi -
2020 Poster: On Second-Order Group Influence Functions for Black-Box Predictions »
Samyadeep Basu · Xuchen You · Soheil Feizi -
2019 Poster: Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation »
Sahil Singla · Eric Wallace · Shi Feng · Soheil Feizi -
2019 Oral: Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation »
Sahil Singla · Eric Wallace · Shi Feng · Soheil Feizi -
2019 Poster: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2019 Oral: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi