Timezone: »

Trajectory Diversity for Zero-Shot Coordination
Andrei Lupu · Brandon Cui · Hengyuan Hu · Jakob Foerster

Tue Jul 20 09:00 PM -- 11:00 PM (PDT) @ None #None

We study the problem of zero-shot coordination (ZSC), where agents must independently produce strategies for a collaborative game that are compatible with novel partners not seen during training. Our first contribution is to consider the need for diversity in generating such agents. Because self-play (SP) agents control their own trajectory distribution during training, each policy typically only performs well on this exact distribution. As a result, they achieve low scores in ZSC, since playing with another agent is likely to put them in situations they have not encountered during training. To address this issue, we train a common best response (BR) to a population of agents, which we regulate to be diverse. To this end, we introduce \textit{Trajectory Diversity} (TrajeDi) -- a differentiable objective for generating diverse reinforcement learning policies. We derive TrajeDi as a generalization of the Jensen-Shannon divergence between policies and motivate it experimentally in two simple settings. We then focus on the collaborative card game Hanabi, demonstrating the scalability of our method and improving upon the cross-play scores of both independently trained SP agents and BRs to unregularized populations.

Author Information

Andrei Lupu (Mila, McGill University)
Brandon Cui (Facebook AI Research)
Hengyuan Hu (Facebook AI Research)
Jakob Foerster (Facebook AI Research)

Jakob Foerster started as an Associate Professor at the department of engineering science at the University of Oxford in the fall of 2021. During his PhD at Oxford he helped bring deep multi-agent reinforcement learning to the forefront of AI research and interned at Google Brain, OpenAI, and DeepMind. After his PhD he worked as a research scientist at Facebook AI Research in California, where he continued doing foundational work. He was the lead organizer of the first Emergent Communication workshop at NeurIPS in 2017, which he has helped organize ever since and was awarded a prestigious CIFAR AI chair in 2019. His past work addresses how AI agents can learn to cooperate and communicate with other agents, most recently he has been developing and addressing the zero-shot coordination problem setting, a crucial step towards human-AI coordination.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors