Timezone: »
Learning composable policies for environments with complex rules and tasks is a challenging problem. We introduce a hierarchical reinforcement learning framework called the Logical Options Framework (LOF) that learns policies that are satisfying, optimal, and composable. LOF efficiently learns policies that satisfy tasks by representing the task as an automaton and integrating it into learning and planning. We provide and prove conditions under which LOF will learn satisfying, optimal policies. And lastly, we show how LOF's learned policies can be composed to satisfy unseen tasks with only 10-50 retraining steps on our benchmarks. We evaluate LOF on four tasks in discrete and continuous domains, including a 3D pick-and-place environment.
Author Information
Brandon Araki (MIT)
Xiao Li (MIT)
Kiran Vodrahalli (Columbia University)
Jonathan DeCastro (Toyota Research Institute)
Micah Fry (MIT Lincoln Laboratory)
Daniela Rus (MIT CSAIL)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: The Logical Options Framework »
Wed. Jul 21st 02:00 -- 02:20 PM Room None
More from the Same Authors
-
2021 : Is Bang-Bang Control All You Need? »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2021 : Invited Talk 2: Addressing Model Bias and Uncertainty via Evidential Deep Learning »
Daniela Rus -
2021 Poster: On-Off Center-Surround Receptive Fields for Accurate and Robust Image Classification »
Zahra Babaiee · Ramin Hasani · Mathias Lechner · Daniela Rus · Radu Grosu -
2021 Spotlight: On-Off Center-Surround Receptive Fields for Accurate and Robust Image Classification »
Zahra Babaiee · Ramin Hasani · Mathias Lechner · Daniela Rus · Radu Grosu -
2020 Poster: A Natural Lottery Ticket Winner: Reinforcement Learning with Ordinary Neural Circuits »
Ramin Hasani · Mathias Lechner · Alexander Amini · Daniela Rus · Radu Grosu -
2020 Poster: Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control »
Jie Xu · Yunsheng Tian · Pingchuan Ma · Daniela Rus · Shinjiro Sueda · Wojciech Matusik -
2017 Poster: Coresets for Vector Summarization with Applications to Network Graphs »
Dan Feldman · Sedat Ozer · Daniela Rus -
2017 Talk: Coresets for Vector Summarization with Applications to Network Graphs »
Dan Feldman · Sedat Ozer · Daniela Rus