Timezone: »

Online A-Optimal Design and Active Linear Regression
Xavier Fontaine · Pierre Perrault · Michal Valko · Vianney Perchet

Wed Jul 21 06:30 AM -- 06:35 AM (PDT) @
We consider in this paper the problem of optimal experiment design where a decision maker can choose which points to sample to obtain an estimate $\hat{\beta}$ of the hidden parameter $\beta^{\star}$ of an underlying linear model. The key challenge of this work lies in the heteroscedasticity assumption that we make, meaning that each covariate has a different and unknown variance. The goal of the decision maker is then to figure out on the fly the optimal way to allocate the total budget of $T$ samples between covariates, as sampling several times a specific one will reduce the variance of the estimated model around it (but at the cost of a possible higher variance elsewhere). By trying to minimize the $\ell^2$-loss $\mathbb{E} [\lVert\hat{\beta}-\beta^{\star}\rVert^2]$ the decision maker is actually minimizing the trace of the covariance matrix of the problem, which corresponds then to online A-optimal design. Combining techniques from bandit and convex optimization we propose a new active sampling algorithm and we compare it with existing ones. We provide theoretical guarantees of this algorithm in different settings, including a $\mathcal{O}(T^{-2})$ regret bound in the case where the covariates form a basis of the feature space, generalizing and improving existing results. Numerical experiments validate our theoretical findings.

Author Information

Xavier Fontaine (ENS Paris-Saclay)
Pierre Perrault (ENS Paris Saclay & Inria)
Michal Valko (DeepMind / Inria / ENS Paris-Saclay)
Michal Valko

Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.

Vianney Perchet (ENSAE & Criteo AI Lab)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors