Timezone: »
Performative distribution shift captures the setting where the choice of which ML model is deployed changes the data distribution. For example, a bank which uses the number of open credit lines to determine a customer's risk of default on a loan may induce customers to open more credit lines in order to improve their chances of being approved. Because of the interactions between the model and data distribution, finding the optimal model parameters is challenging. Works in this area have focused on finding stable points, which can be far from optimal. Here we introduce \emph{performative gradient descent} (PerfGD), an algorithm for computing performatively optimal points. Under regularity assumptions on the performative loss, PerfGD is the first algorithm which provably converges to an optimal point. PerfGD explicitly captures how changes in the model affects the data distribution and is simple to use. We support our findings with theory and experiments.
Author Information
Zachary Izzo (Stanford University)
Lexing Ying (Stanford University)
James Zou (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Wed. Jul 21st 04:00 -- 06:00 PM Room
More from the Same Authors
-
2021 : Meaningfully Explaining a Model's Mistakes »
· Abubakar Abid · James Zou -
2021 : Meaningfully Explaining a Model's Mistakes »
Abubakar Abid · James Zou -
2021 : MetaDataset: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts »
Weixin Liang · James Zou · Weixin Liang -
2021 : Have the Cake and Eat It Too? Higher Accuracy and Less Expense when Using Multi-label ML APIs Online »
Lingjiao Chen · James Zou · Matei Zaharia -
2021 : Machine Learning API Shift Assessments: Change is Coming! »
Lingjiao Chen · James Zou · Matei Zaharia -
2021 : Stateful Performative Gradient Descent »
Zachary Izzo · James Zou · Lexing Ying -
2021 : Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI Interactions »
Kailas Vodrahalli · James Zou -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2023 : Improve Model Inference Cost with Image Gridding »
Shreyas Krishnaswamy · Lisa Dunlap · Lingjiao Chen · Matei Zaharia · James Zou · Joseph Gonzalez -
2023 : Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value »
Yongchan Kwon · James Zou -
2023 Poster: Data-Driven Subgroup Identification for Linear Regression »
Zachary Izzo · Ruishan Liu · James Zou -
2022 : GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language »
Zhiying Zhu · Weixin Liang · James Zou -
2022 : Evaluation of ML in Health/Science »
James Zou -
2022 : Data Sculpting: Interpretable Algorithm for End-to-End Cohort Selection »
Ruishan Liu · James Zou -
2022 : Data Budgeting for Machine Learning »
Weixin Liang · James Zou -
2022 Poster: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Poster: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Spotlight: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2021 Poster: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Spotlight: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Top-k eXtreme Contextual Bandits with Arm Hierarchy »
Rajat Sen · Alexander Rakhlin · Lexing Ying · Rahul Kidambi · Dean Foster · Daniel Hill · Inderjit Dhillon -
2021 Spotlight: Top-k eXtreme Contextual Bandits with Arm Hierarchy »
Rajat Sen · Alexander Rakhlin · Lexing Ying · Rahul Kidambi · Dean Foster · Daniel Hill · Inderjit Dhillon -
2020 Poster: A Distributional Framework For Data Valuation »
Amirata Ghorbani · Michael Kim · James Zou -
2020 Poster: A Mean Field Analysis Of Deep ResNet And Beyond: Towards Provably Optimization Via Overparameterization From Depth »
Yiping Lu · Chao Ma · Yulong Lu · Jianfeng Lu · Lexing Ying -
2019 Poster: Concrete Autoencoders: Differentiable Feature Selection and Reconstruction »
Muhammed Fatih Balın · Abubakar Abid · James Zou -
2019 Poster: Discovering Conditionally Salient Features with Statistical Guarantees »
Jaime Roquero Gimenez · James Zou -
2019 Oral: Discovering Conditionally Salient Features with Statistical Guarantees »
Jaime Roquero Gimenez · James Zou -
2019 Oral: Concrete Autoencoders: Differentiable Feature Selection and Reconstruction »
Muhammed Fatih Balın · Abubakar Abid · James Zou -
2019 Poster: Data Shapley: Equitable Valuation of Data for Machine Learning »
Amirata Ghorbani · James Zou -
2019 Oral: Data Shapley: Equitable Valuation of Data for Machine Learning »
Amirata Ghorbani · James Zou -
2018 Poster: CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions »
Kevin Tian · Teng Zhang · James Zou -
2018 Oral: CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions »
Kevin Tian · Teng Zhang · James Zou