Timezone: »
The surrogate that predicts the performance of hyperparameters has been a key component for sequential model-based hyperparameter optimization. In practical applications, a trial of a hyper-parameter configuration may be so costly that a surrogate is expected to return an optimal configuration with as few trials as possible. Observing that human experts draw on their expertise in a machine learning model by trying configurations that once performed well on other datasets, we are inspired to build a trial-efficient surrogate by transferring the meta-knowledge learned from historical trials on other datasets. We propose an end-to-end surrogate named as Transfer NeuralProcesses (TNP) that learns a comprehensive set of meta-knowledge, including the parameters of historical surrogates, historical trials, and initial configurations for other datasets. Experiments on extensive OpenML datasets and three computer vision datasets demonstrate that the proposed algorithm achieves state-of-the-art performance in at least one order of magnitude less trials.
Author Information
Ying WEI (City University of Hong Kong)
Peilin Zhao (Tencent AI Lab)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Wed. Jul 21st 04:00 -- 06:00 PM Room
More from the Same Authors
-
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Hypergraph Convolutional Networks via Equivalence Between Hypergraphs and Undirected Graphs »
Jiying Zhang · fuyang li · Xi Xiao · Tingyang Xu · Yu Rong · Junzhou Huang · Yatao Bian -
2022 Poster: Efficient Test-Time Model Adaptation without Forgetting »
Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Yaofo Chen · Shijian Zheng · Peilin Zhao · Mingkui Tan -
2022 Spotlight: Efficient Test-Time Model Adaptation without Forgetting »
Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Yaofo Chen · Shijian Zheng · Peilin Zhao · Mingkui Tan -
2022 Poster: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Poster: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Spotlight: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Spotlight: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Poster: The Role of Deconfounding in Meta-learning »
Yinjie Jiang · Zhengyu Chen · Kun Kuang · Luotian Yuan · Xinhai Ye · Zhihua Wang · Fei Wu · Ying WEI -
2022 Poster: Frustratingly Easy Transferability Estimation »
Long-Kai Huang · Junzhou Huang · Yu Rong · Qiang Yang · Ying WEI -
2022 Spotlight: The Role of Deconfounding in Meta-learning »
Yinjie Jiang · Zhengyu Chen · Kun Kuang · Luotian Yuan · Xinhai Ye · Zhihua Wang · Fei Wu · Ying WEI -
2022 Spotlight: Frustratingly Easy Transferability Estimation »
Long-Kai Huang · Junzhou Huang · Yu Rong · Qiang Yang · Ying WEI -
2021 Poster: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: AdaXpert: Adapting Neural Architecture for Growing Data »
Shuaicheng Niu · Jiaxiang Wu · Guanghui Xu · Yifan Zhang · Yong Guo · Peilin Zhao · Peng Wang · Mingkui Tan -
2021 Spotlight: AdaXpert: Adapting Neural Architecture for Growing Data »
Shuaicheng Niu · Jiaxiang Wu · Guanghui Xu · Yifan Zhang · Yong Guo · Peilin Zhao · Peng Wang · Mingkui Tan -
2020 Poster: Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search »
Yong Guo · Yaofo Chen · Yin Zheng · Peilin Zhao · Jian Chen · Junzhou Huang · Mingkui Tan -
2019 Poster: Hierarchically Structured Meta-learning »
Huaxiu Yao · Ying WEI · Junzhou Huang · Zhenhui (Jessie) Li -
2019 Poster: RaFM: Rank-Aware Factorization Machines »
Xiaoshuang Chen · Yin Zheng · Jiaxing Wang · Wenye Ma · Junzhou Huang -
2019 Oral: Hierarchically Structured Meta-learning »
Huaxiu Yao · Ying WEI · Junzhou Huang · Zhenhui (Jessie) Li -
2019 Oral: RaFM: Rank-Aware Factorization Machines »
Xiaoshuang Chen · Yin Zheng · Jiaxing Wang · Wenye Ma · Junzhou Huang -
2019 Poster: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2019 Oral: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2018 Poster: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Poster: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Oral: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Oral: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Poster: Transfer Learning via Learning to Transfer »
Ying WEI · Yu Zhang · Junzhou Huang · Qiang Yang -
2018 Oral: Transfer Learning via Learning to Transfer »
Ying WEI · Yu Zhang · Junzhou Huang · Qiang Yang