Timezone: »

Overcoming Catastrophic Forgetting by Bayesian Generative Regularization
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai

Thu Jul 22 09:00 PM -- 11:00 PM (PDT) @

In this paper, we propose a new method to over-come catastrophic forgetting by adding generative regularization to Bayesian inference frame-work. Bayesian method provides a general frame-work for continual learning. We could further construct a generative regularization term for all given classification models by leveraging energy-based models and Langevin dynamic sampling to enrich the features learned in each task. By combining discriminative and generative loss together, we empirically show that the proposed method outperforms state-of-the-art methods on a variety of tasks, avoiding catastrophic forgetting in continual learning. In particular, the proposed method outperforms baseline methods over 15%on the Fashion-MNIST dataset and 10%on the CUB dataset.

Author Information

Wei Wei (Google)
Cho-Jui Hsieh (UCLA)
Bo Dai (Google Brain)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors