Timezone: »

 
Poster
Just Train Twice: Improving Group Robustness without Training Group Information
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn

Tue Jul 20 09:00 PM -- 11:00 PM (PDT) @ Virtual

Standard training via empirical risk minimization (ERM) can produce models that achieve low error on average but high error on minority groups, especially in the presence of spurious correlations between the input and label. Prior approaches to this problem, like group distributionally robust optimization (group DRO), generally require group annotations for every training point. On the other hand, approaches that do not use group annotations generally do not improve minority performance. For example, we find that joint DRO, which dynamically upweights examples with high training loss, tends to optimize for examples that are irrelevant to the specific groups we seek to do well on. In this paper, we propose a simple two-stage approach, JTT, that achieves comparable performance to group DRO while only requiring group annotations on a significantly smaller validation set. JTT first attempts to identify informative training examples, which are often minority examples, by training an initial ERM classifier and selecting the examples with high training loss. Then, it trains a final classifier by upsampling the selected examples. Crucially, unlike joint DRO, JTT does not iteratively upsample examples that have high loss under the final classifier. On four image classification and natural language processing tasks with spurious correlations, we show that JTT closes 85% of the gap in accuracy on the worst group between ERM and group DRO.

Author Information

Evan Liu (Stanford University, Google Research)
Behzad Haghgoo (Stanford University)
Annie Chen (Stanford University)
Aditi Raghunathan (Stanford)
Pang Wei Koh (Stanford University)
Shiori Sagawa (Stanford University)
Percy Liang (Stanford University)
Chelsea Finn (Stanford)

Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University. Finn's research interests lie in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, her work has included deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for learning reward functions underlying behavior, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelor's degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Microsoft Research Faculty Fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across four universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors