Timezone: »
When machine predictors can achieve higher performance than the human decision-makers they support, improving the performance of human decision-makers is often conflated with improving machine accuracy. Here we propose a framework to directly support human decision-making, in which the role of machines is to reframe problems rather than to prescribe actions through prediction. Inspired by the success of representation learning in improving performance of machine predictors, our framework learns human-facing representations optimized for human performance. This “Mind Composed with Machine” framework incorporates a human decision-making model directly into the representation learning paradigm and is trained with a novel human-in-the-loop training procedure. We empirically demonstrate the successful application of the framework to various tasks and representational forms.
Author Information
Sophie Hilgard (Harvard University)
Nir Rosenfeld (Harvard)
Mahzarin Banaji (Harvard University)
Jack Cao (Harvard)
David Parkes (Harvard University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Learning Representations by Humans, for Humans »
Thu. Jul 22nd 04:00 -- 06:00 PM Room
More from the Same Authors
-
2020 : Contributed Talk: From Predictions to Decisions: Using Lookahead Regularization »
Nir Rosenfeld · Sai Srivatsa Ravindranath · David Parkes -
2021 : Feature Attributions and Counterfactual Explanations Can Be Manipulated »
· Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2022 : In the Eye of the Beholder: Robust Prediction with Causal User Modeling »
Amir Feder · Guy Horowitz · Yoav Wald · Roi Reichart · Nir Rosenfeld -
2023 Poster: Oracles and Followers: Stackelberg Equilibria in Deep Multi-Agent Reinforcement Learning »
Matthias Gerstgrasser · David Parkes -
2023 Poster: Learning to Suggest Breaks: Sustainable Optimization of Long-Term User Engagement »
Eden Saig · Nir Rosenfeld -
2023 Poster: Causal Strategic Classification: A Tale of Two Shifts »
Guy Horowitz · Nir Rosenfeld -
2023 Poster: Performative Recommendation: Diversifying Content via Strategic Incentives »
Itay Eilat · Nir Rosenfeld -
2022 Poster: Generalized Strategic Classification and the Case of Aligned Incentives »
Sagi Levanon · Nir Rosenfeld -
2022 Poster: Strategic Representation »
Vineet Nair · Ganesh Ghalme · Inbal Talgam-Cohen · Nir Rosenfeld -
2022 Oral: Generalized Strategic Classification and the Case of Aligned Incentives »
Sagi Levanon · Nir Rosenfeld -
2022 Spotlight: Strategic Representation »
Vineet Nair · Ganesh Ghalme · Inbal Talgam-Cohen · Nir Rosenfeld -
2021 Poster: Strategic Classification in the Dark »
Ganesh Ghalme · Vineet Nair · Itay Eilat · Inbal Talgam-Cohen · Nir Rosenfeld -
2021 Spotlight: Strategic Classification in the Dark »
Ganesh Ghalme · Vineet Nair · Itay Eilat · Inbal Talgam-Cohen · Nir Rosenfeld -
2021 Poster: Strategic Classification Made Practical »
Sagi Levanon · Nir Rosenfeld -
2021 Spotlight: Strategic Classification Made Practical »
Sagi Levanon · Nir Rosenfeld -
2020 Poster: The Intrinsic Robustness of Stochastic Bandits to Strategic Manipulation »
Zhe Feng · David Parkes · Haifeng Xu -
2019 Poster: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Oral: Fairness without Harm: Decoupled Classifiers with Preference Guarantees »
Berk Ustun · Yang Liu · David Parkes -
2019 Poster: Learning to Collaborate in Markov Decision Processes »
Goran Radanovic · Rati Devidze · David Parkes · Adish Singla -
2019 Poster: Optimal Auctions through Deep Learning »
Paul Duetting · Zhe Feng · Harikrishna Narasimhan · David Parkes · Sai Srivatsa Ravindranath -
2019 Oral: Learning to Collaborate in Markov Decision Processes »
Goran Radanovic · Rati Devidze · David Parkes · Adish Singla -
2019 Oral: Optimal Auctions through Deep Learning »
Paul Duetting · Zhe Feng · Harikrishna Narasimhan · David Parkes · Sai Srivatsa Ravindranath