Timezone: »
Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper we propose Voice2Serie (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 31 different time series tasks we show that V2S outperforms or is on part with state-of-the-art methods on 22 tasks, and improves their average accuracy by 1.72%. We further provide theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification.
Author Information
Huck Yang (Georgia Tech)
C.-H. Huck Yang is a 4th-year Ph.D. student at Georgia Institute of Technology working on robust and privacy-preserving speech recognition and sequence modeling. (ICML 21, ICASSP 20 & 21, InterSpeech 20 & 21, and More) Previously, he worked at Amazon Alexa Speech 2020 and 2021, Hitachi Central Lab in 2019, EPFL in 2018, KAUST and TSMC in 2017, and received Wallace H. Coulter Fellowship in 2017. His advisor is Prof. Chin-Hui Lee, IEEE Fellow, and ISCA Fellow. He is on the job market for an academic or industry position in 2022.
Yun-Yun Tsai (Columbia University)
Pin-Yu Chen (IBM Research AI)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Voice2Series: Reprogramming Acoustic Models for Time Series Classification »
Tue. Jul 20th 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2021 : Generalizing Adversarial Training to Composite Semantic Perturbations »
Yun-Yun Tsai · Lei Hsiung · Pin-Yu Chen · Tsung-Yi Ho -
2023 Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Baharan Mirzasoleiman · Sanmi Koyejo -
2022 Workshop: New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Hima Lakkaraju · Sanmi Koyejo -
2022 Poster: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Poster: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Spotlight: Sharp-MAML: Sharpness-Aware Model-Agnostic Meta Learning »
Momin Abbas · Quan Xiao · Lisha Chen · Pin-Yu Chen · Tianyi Chen -
2022 Spotlight: Linearity Grafting: Relaxed Neuron Pruning Helps Certifiable Robustness »
Tianlong Chen · Huan Zhang · Zhenyu Zhang · Shiyu Chang · Sijia Liu · Pin-Yu Chen · Zhangyang “Atlas” Wang -
2022 Poster: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2022 Spotlight: Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling »
Hongkang Li · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2022 Poster: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2022 Spotlight: Revisiting Contrastive Learning through the Lens of Neighborhood Component Analysis: an Integrated Framework »
Ching-Yun (Irene) Ko · Jeet Mohapatra · Sijia Liu · Pin-Yu Chen · Luca Daniel · Lily Weng -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2021 Spotlight: Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design »
yue cao · Payel Das · Vijil Chenthamarakshan · Pin-Yu Chen · Igor Melnyk · Yang Shen -
2020 Poster: Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing »
Sanghamitra Dutta · Dennis Wei · Hazar Yueksel · Pin-Yu Chen · Sijia Liu · Kush Varshney -
2020 Poster: Proper Network Interpretability Helps Adversarial Robustness in Classification »
Akhilan Boopathy · Sijia Liu · Gaoyuan Zhang · Cynthia Liu · Pin-Yu Chen · Shiyu Chang · Luca Daniel -
2020 Poster: Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources »
Yun Yun Tsai · Pin-Yu Chen · Tsung-Yi Ho -
2020 Poster: Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case »
shuai zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2019 Poster: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Poster: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel -
2019 Oral: Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications »
Pin-Yu Chen · Lingfei Wu · Sijia Liu · Indika Rajapakse -
2019 Oral: PROVEN: Verifying Robustness of Neural Networks with a Probabilistic Approach »
Tsui-Wei Weng · Pin-Yu Chen · Lam Nguyen · Mark Squillante · Akhilan Boopathy · Ivan Oseledets · Luca Daniel