Timezone: »
Current deep reinforcement learning (RL) algorithms are still highly task-specific and lack the ability to generalize to new environments. Lifelong learning (LLL), however, aims at solving multiple tasks sequentially by efficiently transferring and using knowledge between tasks. Despite a surge of interest in lifelong RL in recent years, the lack of a realistic testbed makes robust evaluation of LLL algorithms difficult. Multi-agent RL (MARL), on the other hand, can be seen as a natural scenario for lifelong RL due to its inherent non-stationarity, since the agents’ policies change over time. In this work, we introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings. Our setup is based on Hanabi — a partially-observable, fully cooperative multi-agent game that has been shown to be challenging for zero-shot coordination. Its large strategy space makes it a desirable environment for lifelong RL tasks. We evaluate several recent MARL methods, and benchmark state-of-the-art LLL algorithms in limited memory and computation regimes to shed light on their strengths and weaknesses. This continual learning paradigm also provides us with a pragmatic way of going beyond centralized training which is the most commonly used training protocol in MARL. We empirically show that the agents trained in our setup are able to coordinate well with unseen agents, without any additional assumptions made by previous works. The code and all pre-trained models are available at https://github.com/chandar-lab/Lifelong-Hanabi.
Author Information
Hadi Nekoei (MILA)
Akilesh Badrinaaraayanan (Mila / University of Montreal)
Aaron Courville (Université de Montréal)
Sarath Chandar (Mila / École Polytechnique de Montréal)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Continuous Coordination As a Realistic Scenario for Lifelong Learning »
Wed. Jul 21st 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2023 : Thompson Sampling for Improved Exploration in GFlowNets »
Jarrid Rector-Brooks · Kanika Madan · Moksh Jain · Maksym Korablyov · Chenghao Liu · Sarath Chandar · Nikolay Malkin · Yoshua Bengio -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Poster: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Spotlight: Towards Evaluating Adaptivity of Model-Based Reinforcement Learning Methods »
Yi Wan · Ali Rahimi-Kalahroudi · Janarthanan Rajendran · Ida Momennejad · Sarath Chandar · Harm van Seijen -
2022 Poster: Generative Flow Networks for Discrete Probabilistic Modeling »
Dinghuai Zhang · Nikolay Malkin · Zhen Liu · Alexandra Volokhova · Aaron Courville · Yoshua Bengio -
2022 Poster: The Primacy Bias in Deep Reinforcement Learning »
Evgenii Nikishin · Max Schwarzer · Pierluca D'Oro · Pierre-Luc Bacon · Aaron Courville -
2022 Spotlight: Generative Flow Networks for Discrete Probabilistic Modeling »
Dinghuai Zhang · Nikolay Malkin · Zhen Liu · Alexandra Volokhova · Aaron Courville · Yoshua Bengio -
2022 Spotlight: The Primacy Bias in Deep Reinforcement Learning »
Evgenii Nikishin · Max Schwarzer · Pierluca D'Oro · Pierre-Luc Bacon · Aaron Courville -
2021 Poster: Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? »
Dinghuai Zhang · Kartik Ahuja · Yilun Xu · Yisen Wang · Aaron Courville -
2021 Oral: Can Subnetwork Structure Be the Key to Out-of-Distribution Generalization? »
Dinghuai Zhang · Kartik Ahuja · Yilun Xu · Yisen Wang · Aaron Courville -
2021 Poster: Out-of-Distribution Generalization via Risk Extrapolation (REx) »
David Krueger · Ethan Caballero · Joern-Henrik Jacobsen · Amy Zhang · Jonathan Binas · Dinghuai Zhang · Remi Le Priol · Aaron Courville -
2021 Oral: Out-of-Distribution Generalization via Risk Extrapolation (REx) »
David Krueger · Ethan Caballero · Joern-Henrik Jacobsen · Amy Zhang · Jonathan Binas · Dinghuai Zhang · Remi Le Priol · Aaron Courville -
2020 : Concluding Remarks »
Sarath Chandar · Shagun Sodhani -
2020 : Q&A by Rich Sutton »
Richard Sutton · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Irina Rish »
Irina Rish · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Jürgen Schmidhuber »
Jürgen Schmidhuber · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Partha Pratim Talukdar »
Partha Talukdar · Shagun Sodhani · Sarath Chandar -
2020 : Q&A with Katja Hoffman »
Katja Hofmann · Luisa Zintgraf · Rika Antonova · Sarath Chandar · Shagun Sodhani -
2020 Workshop: 4th Lifelong Learning Workshop »
Shagun Sodhani · Sarath Chandar · Balaraman Ravindran · Doina Precup -
2020 : Opening Comments »
Sarath Chandar · Shagun Sodhani -
2020 Poster: Learning to Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning »
Sai Krishna Gottipati · Boris Sattarov · Sufeng Niu · Yashaswi Pathak · Haoran Wei · Shengchao Liu · Shengchao Liu · Simon Blackburn · Karam Thomas · Connor Coley · Jian Tang · Sarath Chandar · Yoshua Bengio -
2020 Poster: AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation »
Jae Hyun Lim · Aaron Courville · Christopher Pal · Chin-Wei Huang -
2020 Poster: Countering Language Drift with Seeded Iterated Learning »
Yuchen Lu · Soumye Singhal · Florian Strub · Aaron Courville · Olivier Pietquin -
2019 Workshop: Invertible Neural Networks and Normalizing Flows »
Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Aidan Gomez · Chris Cremer · Aaron Courville · Ricky T. Q. Chen · Danilo J. Rezende -
2019 Workshop: Workshop on Multi-Task and Lifelong Reinforcement Learning »
Sarath Chandar · Shagun Sodhani · Khimya Khetarpal · Tom Zahavy · Daniel J. Mankowitz · Shie Mannor · Balaraman Ravindran · Doina Precup · Chelsea Finn · Abhishek Gupta · Amy Zhang · Kyunghyun Cho · Andrei A Rusu · Facebook Rob Fergus -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Poster: Hierarchical Importance Weighted Autoencoders »
Chin-Wei Huang · Kris Sankaran · Eeshan Dhekane · Alexandre Lacoste · Aaron Courville -
2019 Oral: Hierarchical Importance Weighted Autoencoders »
Chin-Wei Huang · Kris Sankaran · Eeshan Dhekane · Alexandre Lacoste · Aaron Courville -
2017 Workshop: Lifelong Learning: A Reinforcement Learning Approach »
Sarath Chandar · Balaraman Ravindran · Daniel J. Mankowitz · Shie Mannor · Tom Zahavy