Timezone: »

MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven Reinforcement Learning
Kevin Li · Abhishek Gupta · Ashwin D Reddy · Vitchyr Pong · Aurick Zhou · Justin Yu · Sergey Levine

Tue Jul 20 07:35 PM -- 07:40 PM (PDT) @

Exploration in reinforcement learning is, in general, a challenging problem. A common technique to make learning easier is providing demonstrations from a human supervisor, but such demonstrations can be expensive and time-consuming to acquire. In this work, we study a more tractable class of reinforcement learning problems defined simply by examples of successful outcome states, which can be much easier to provide while still making the exploration problem more tractable. In this problem setting, the reward function can be obtained automatically by training a classifier to categorize states as successful or not. However, as we will show, this requires the classifier to make uncertainty-aware predictions that are very difficult using standard techniques for training deep networks. To address this, we propose a novel mechanism for obtaining calibrated uncertainty based on an amortized technique for computing the normalized maximum likelihood (NML) distribution, leveraging tools from meta-learning to make this distribution tractable. We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions, while also providing more effective guidance towards the goal. We demonstrate that our algorithm solves a number of challenging navigation and robotic manipulation tasks which prove difficult or impossible for prior methods.

Author Information

Kevin Li (UC Berkeley)
Abhishek Gupta (UC Berkeley)
Ashwin D Reddy (UC Berkeley)
Vitchyr Pong (UC Berkeley)
Aurick Zhou (UC Berkeley)
Justin Yu (Berkeley)
Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors