Timezone: »

 
Poster
EfficientNetV2: Smaller Models and Faster Training
Mingxing Tan · Quoc Le

Tue Jul 20 09:00 PM -- 11:00 PM (PDT) @ None #None

This paper introduces EfficientNetV2, a new family of convolutional networks that have faster training speed and better parameter efficiency than previous models. To develop these models, we use a combination of training-aware neural architecture search and scaling, to jointly optimize training speed and parameter efficiency. The models were searched from the search space enriched with new ops such as Fused-MBConv. Our experiments show that EfficientNetV2 models train much faster than state-of-the-art models while being up to 6.8x smaller. Our training can be further sped up by progressively increasing the image size during training, but it often causes a drop in accuracy. To compensate for this accuracy drop, we propose an improved method of progressive learning, which adaptively adjusts regularization (e.g. data augmentation) along with image size. With progressive learning, our EfficientNetV2 significantly outperforms previous models on ImageNet and CIFAR/Cars/Flowers datasets. By pretraining on the same ImageNet21k, our EfficientNetV2 achieves 87.3% top-1 accuracy on ImageNet ILSVRC2012, outperforming the recent ViT by 2.0% accuracy while training 5x-11x faster using the same computing resources.

Author Information

Mingxing Tan (Google Brain)
Quoc Le (Google Brain)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors